• Title/Summary/Keyword: Alkaline pretense

Search Result 42, Processing Time 0.029 seconds

Chemical composition and Stabilities of Invertase from Korean Ginseng, Panax ginseng (고려인삼(Panax RiwenR) Invertase의 화학조성과 안정성)

  • 김용환;김병묵
    • Journal of Ginseng Research
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 1990
  • The chemical composition and stabilities of the purified ginseng invertase were investigated. The purified enzyme was found to be a glycoprotein composed of 80.2% protein and 19.7% total sugar. The protein component of the enzyme was composed of acidic amino acid (9.3%), basic amino acid (48.9%), nonpolar amino acid (21.4%), polar amino acid (20.4%) and 6.1% S-containing amino acid. It showed especially high contents of histidine and serine. The enzyme was inactivated almost completely by the treatment with some proteases (papain, pepsin. trypsin, pancreatin and microbial alkaline pretense) and protein denatllrants (8M urea and 6M guanidine-HC1), bolt not with glyrosidase (${\alpha}$-amylase, ${\beta}$-amylase. glcoamylese and cellullase). btonosaccharides sllch as glilrose, fructose, galactose and mannose did not exert any influence on the enzyme activity. The activity of the enzyme was inhibited by Ag+, Mn2+, Hg2+, Zn2+ and Al3+, whereas Ca2+, Mg2+, Ba2+ and Fe3+ gave rather activating effects on the enzyme activity. The enzyme was relatively stable in the VH range of VH 6 and 8, and at the temperatures below 35$^{\circ}C$.

  • PDF

Isolation and Characterization of Bacillus sp. WRD-2 Extracellular Protease from Soil (토양에서 분리한 Bacillus sp. WRD-2가 생산하는 Extracellular Protease의 특성)

  • Ok, Min;Seo, Won-Seok;Cha, Jae-Young;Cho, Young-Su
    • Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.246-250
    • /
    • 2001
  • In order to produce alkaline protease, psychrotrophic Bacterium which have high enzyme activity, was isolated by using enrichment culture from soil samples and identified as genus Bacillus sp. The optimal pH and temperature for the enzyme activity were pH 6 and $40^{\circ}C$. The temperature range of high enzyme activity was $20{\sim}40^{\circ}C$. The optimal initial pH of culture condition for enzyme was pH 6. The most favorable carbon and nitrogen sources for the production of protease by Bacillus sp. WRD-2 were 3% maltose and 4% yeast extract, respectively.

  • PDF

Effects of Pretense Treatment on Functional Properties of Soymilk Protein (단백분해 효소처리가 두유단백질의 기능성에 미치는 영향)

  • 변진원;황인경
    • Korean journal of food and cookery science
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 1995
  • This study was carried out to investigate the effect of protease on the functionality of soymilk protein. The protease from Bacillus polymyxa was selected because of the least production of bitter taste and calcium-aggregation. The results are summarized as follows: 1. Solubility of SMP(soymilk protein) and SPI(soyprotein isolate) were lowest at pH 4.7 and increased as the pH value reached closer to either ends. PT-SMP(pretense treated soymilk protein) showed higher solubility at all pH range, especially at pH 4.7 than SMP, SPI. 2. Emulsion activity of three samples was lowest at pH 4.7 and significantly increased as pH approched higher acidic or alkaline regions. PT-SMP showed similar activity to other samples, but less stability. 3. Foam capacity of PT-SMP was lowest at pH 8 and increased in acidic, alkaline pH. PT-SMP showed higher foam capacity at all pH range, but lower foam stability than SMP and SPI. 4. PT-SMP showed higher heat coagulability than other samples at all pH range except pH 4.7.

  • PDF

Improvement of Yields and Organoleptic Quality of Anchovy Extract by Alkali-Protease Hydrolysis (알칼리와 효소처리에 의한 멸치 추출액의 수율 및 관능적 성질의 향상)

  • Kim, Woo-Jung;Park, Joo-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.433-440
    • /
    • 1988
  • Dried anchovy (Engraulis japonica) was ground and treated with 0.3N NaOH solution and then hydrolyzed with proteolytic enzymes. Extracts obtained by centrifugation of alkali-enzyme treated anchovy slurry was compared with water extract for the yields of soluble solid, protein and ashes and organoleptic characteristics. The data for the yields of the soluble solids, protein and ash showed that a 2-3 folds increase in those yields was resulted by combined alkali-enzyme treatments when it was compared to water only extract. The organoleptic evaluation on the alkali-enzyme treated anchovy extracts also showed a 2-3 folds in flavor strength of all descriptions in odor and taste and a significant improvement in total odor or taste acceptability.

  • PDF

Trypsin Inhibitor from Streptomyces sp. ( Part 1) Isolation of microorganism and purification of the inhibitor (Streptomyces 속 균주가 생성하는 Trypsin Inhibitor (제1보) 균의 분리 및 저해물질의 정제)

  • Yi, Dong-Heui;Seu, Jung-Hwn
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.4
    • /
    • pp.275-281
    • /
    • 1982
  • One strain of Streptomyces sp. (AS-707) isolated from soil was found to produce a biologically active substance that showed a strong inhibitory activity against proteolytic enzymes viz. trypsin, papain, $\alpha$-chymotrypsin, Azotobacter protease, and Bacillus pretense. The substance was separated from culture filtrate by ion exchange column chromatography using Amberlite IRC-50 and CM-cellulose column chromatography. It was found that the recovery yield was 26% as activity basis. The substance was stable in wide pH range from 2.0 to 12.0 at 37$^{\circ}C$, but it was unstable in alkaline pH values at 6$0^{\circ}C$. The activity was thermostable to give 90% activity compared to the intact sample when it was treated at pH5.6 at 10$0^{\circ}C$ for 2 hours.

  • PDF

Purification of Three Extracellular Proteases from Alkalophilic Coryneform Bacteria TU-19 (호알칼리성 Coryeform bacteria TU-19가 생산하는 세종류의 균체외 단백질분해호소의 정제)

  • Choi, Myoung-Chul;Yang, Jae-Sub;Kang, Sun-Chul
    • Applied Biological Chemistry
    • /
    • v.38 no.6
    • /
    • pp.534-540
    • /
    • 1995
  • Alkalophilic coryneform bacteria TU-19 isolated from soil extracellularly produced at least three proteases (Protease I, II, and III). Investigating the cultural conditions related to the enzyme production of this bacterial cell, the optimum pH and temperature were 10.0 and $30^{\circ}C$, respectively. In order to purify these enzymes from the 2 day culture broth ammonium sulfate fractionation, gel filtration and QAE-Sephadex column chromatography were performed step by step. And then these three proteases were purified to near homogeneity by judging from SDS-PAGE pattern, and had the molecular weights of 120, 80, and 45 kilodaltons, respectively. The optimum pH and temperature for the enzyme activity of Protease I and II were 10.5 and $45^{\circ}C$, respectively, and Protease II were 11.0 and $50^{\circ}C$. And the enzymes were completely inhibited by PMSF suggesting serine protease, but not affected by pCMB. 1,10-phenanthroline, IAA, and EDTA.

  • PDF

Enzymological Properties of the Alkaline AL-Protease from Arthrobacter luteus and Detection of Its Active Amino Acid Residue (Arthrobacter luteus로부터 유래한 염기성 AL-Protease의 효소학적 성질 및 활성 아미노산 잔기의 검색)

  • Oh, Hong-Rock;Aizono, Yasuo;Funatsu, Masaru
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.2
    • /
    • pp.193-204
    • /
    • 1984
  • The enzymatic properties of the alkaline AL-protease, which had been prepared from the crude zymolyase of Arthrobzoter luteus, was investigated together with its active amino acid residue. Complete inactivaton of the proteolytic activity of AL-protease by either DFP or PMSF was simultaneously accompanied by the loss of its lytic effect on the lysis of yeast cell wall. In the reaction, AL-protease showed the pattern of inactivation to decrease very slowly, as compared to that of chymotrypsin, and that enzyme and DFP were found to react with a molar ratio of 1 : 1. The preparation of AL-protease exhibited no hydrolytic activity in any substrates of polysaccharases, playing a significant role in the lysis of yeast cell wall. The optimum pH and temperature of AL-protease was pH 10.5 and $65^{\circ}C$, respectively. It also showed stability in the pH range from 5 to 11 and at the temperature below $65^{\circ}C$. Through the identification of the amino acid residue in the active site of the $^{32}P$-diisopropylph-osphorylated(DIP) AL-protease modified specifically with $^{32}P$-labeled DFP, AL-protease was found to be a DFP-sensitive which has a mole of active serine residue involved in its proteolytic activity per mole of the enzyme.

  • PDF

Purification and Characterization of a Keratinase from Bacillus licheniformis Strain for Degradation of Egg Shell Membrane (낙각막 분해를 위한 Bacillus licheniformis로 부터 Keratinase의 정제 및 특성)

  • 전태욱;박기문
    • Food Science of Animal Resources
    • /
    • v.22 no.3
    • /
    • pp.259-266
    • /
    • 2002
  • The egg shell membrane degrading isolated from soil was identified as Bacillus licheniformis by 16S rDNA identification method. A keratinase was isolated from the Baciilu licheniformis culture. DEAE-cellulose ion-exchange and Sephadex C-75 gel chromatograhies were used to purify the enzyme. The specific activity was increased 17.3-fold by the purification procedures. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis and Sephadex G-75 chromatography indicated that the purified keratinase was monomeric and had a molecular weight of 65 kDa. The enzyme showed optimum activity at pH 9.0, and was stable above pH 9.0. The optimum temperature was 50$\^{C}$ and the enzyme was stable in the temperature ranges from 20$\^{C}$ to 50t. By the addition of 1 mM and 10 mM FeSO4, the activities of the enzyme were increased to 111$\pm$4.6% and 133$\pm$3.79%, respectively. The keratinase was an alkaline serine pretense because it was inhibited only by phenylmethylsulfonylfluorice (PMSF).

Characteristics of Intestinal Microflora and Their Extracellular Pretense of Sardine, Sardinops melanosticta (정어리 내장세균의 특성과 균체외 단백분해효소에 관한 연구)

  • CHANG Dong-Suck;CHO Hak-Rae;CHOI Seung-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.184-190
    • /
    • 1984
  • Sardine, Sardinops melanosticta, has been caught more than fifty thousand metric tons every year in adjacent sea of Korea, but most of them used for uneatable fish meal because of their rapid spoilage. Usually it is known that the main reason of putrefaction of foods is caused by the maicro-organisms included in them. Therefore, this experiment was carried out to identify the micro-organisms isolated from the intestine of fresh sardine and characterize their proteolytic enzymes produced from them. Aerobic cell count ranged from $1.7{\times}10^4\;to\;3.6{\times}10^5/g$, while anaerobic cell count, from $2.9{\times}10^4\;to\;5.5{\times}10^5/g$. Most of the isolated strains were psychrotrophic mesophiles. Among the two hundred and eighty strains isolated from the fresh samples, fifty-six strains ($20.0\%$) were proteolytics, one hundred and seventy-five strains ($62.5\%$) were lipolytics and tenty-nine strains ($10.5\%$) had the ability to produce hydrogn sulfide. The most predominantly isolated microbial groups from the fresh sardine were Moraxella ($31.4\%$) and Pseudomonas sup. ($28.6\%$). Flavobacterium-Cytophaga, Vibrio, Acinetobacter, Micrococcus spp. and Enterobacteriaceae appeared from $7.9\%\;to\;5\%$ out of total tested strains. The average bacterial count in the spoiled samples (stored at about $18^{\circ}C$ for 48 hours) was increased to the level of $2.9{\times}10^8/g$ for aerobes, $1.5{\times}10^8/g$ for anaerobes, then one hundred and ten strains, corresponding to $52\%$, out of two hundred and thirteen strains submitted to the test were proteolytics. The strongest proteolytic bacterium among the two hundred and eighty strains was identified as Pseudomonas 101 which grew best at $25^{\circ}C$. The optimum condition for the activity of the proteolytic enzyme produced by Pseudomonas 101 appeared $35^{\circ}C$ and pH 9.0, but the activity was relatively unchanged between 5.0 and 11.0 of pH and between $30^{\circ}C\;and\;50^{\circ}C$ of temperature.

  • PDF

Preparation of Accelerated Salt-fermented Anchovy Sauce Added with Shrimp Byproducts (새우가공부산물을 이용한 속성 멸치액젓의 제조)

  • Kim, Hye-Suk;Yang, Soo-Kyeong;Park, Chan-Ho;Han, Byung-Wook;Kang, Kyung-Tae;Ji, Seung-Gil;Sye, Youn-Eon;Heu, Min-Soo;Kim, Jin-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.8
    • /
    • pp.1265-1273
    • /
    • 2005
  • The purpose of this study was to prepare accelerated salt-fermented anchovy sauce using a shrimp processing byproducts (head, shell and tail) as a fermenting accelerator, and to investigate its physicochemical and enzymatic properties. Four types of sauces were prepared with 0, 10, 20, and 30$\%$ (w/w) addition of shrimp byproduct and fermented at 24$\pm$2$^{\circ}C$ for 360 days. During fermentation, all four type sauces decreased moisture content (67.5$\%$68.0$\%$ to 64.0$\∼$64.8$\%$) and pH (5.52$\∼$7.10 to 5.03$\∼$6.58), but showed increase in their crude protein (7.0$\∼$8.2 to 10.8$\%$) and volatile basic nitrogen contents (40$\∼$75 to 180$\∼$200 mg/100 g of sauce). The ratio of amino nitrogen to total nitrogen contents of control (0$\%$) and sauce with 10$\%$ shrimp byproducts (10$\%$ sauce) were maximized at 270 days, whereas 20$ \% $ and 30$\%$ added sauces were at 180 days. Endoprotease and exoprotease activities of anchovy sauces added with 20$\%$ and 30$\%$ of shrimp byproducts tend to be higher than those of control (0$\%$) and 10$\%$ addition. Proteolytic activities of sauces at pH 9 were about 2 times higher than those at pH 6. Amidolytic activities for LeuPNA decreased remarkably during fermentation, and control (0$\%$) almost lost their activity at 180 days, while additional sauces were relatively stable. These suggest that alkaline pretense of anchovy and shrimp byproducts as a endoprotease mainly contributed to the fermentation of salt-fermented sauces. The protein molecular weight distribution of sauces indicated 2 groups of peaks (peak 1,>70,000 da and peak 2, 3,000$\∼$29,000 da). As the fermentation proceeded, peak 1 tended to decrease in all of sauces, but peak 2 increased rapidly from 30 to 270 days. Optimum fermentation periods of control and 10$\%$ sauces were 270 days and those of 20$\%$ and 30$\%$ sauce were 180 days. The results suggest that shrimp byproduct can be used as accelerator of salt-fermented sauce.