• Title/Summary/Keyword: Alkaline pH

Search Result 1,271, Processing Time 0.029 seconds

2, 4, 6-Trinitrotoluene(TNT) Treatment by the Alkaline Hydrolysis (가수분해에 의한 2, 4, 6-Trinitrotoluene(TNT) 처리)

  • Kwon, Bumgun;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.69-74
    • /
    • 2012
  • This study investigated the TNT decomposition by the treatment of alkaline hydrolysis. To obtain this objecitive, spectrum shift characteristics, pH effect, kinetics, and product analysis were examined during the alkaline hydrolysis by means of hydroxide ions. At pH = 12, an aqueous solution of TNT was changed into yellow-brown coloring, in which its absorbances were newly increased in a range of wavelength 400-600 nm. From the kinetic data, pseudo-first-order rate constant in a excess of hydroxide ion, in contrast to TNT concentration, was $0.0022min^{-1}$, which means that the reaction rate between TNT and hydroxide ion can be very slow, and that 1,047 min is necessary to achieve a 90% reduction of the initial TNT. In products analyses, nitrite ions and formic acid were mainly produced by the alkaline hydrolysis, nitrate ions and oxalic acid as minor products were generated.

Properties of a Thermolabile Alkaline Phosphatase from the Marine Bacterium Vibrio sp. M-96 (해수에서 분리한 Vibrio sp. M-96 균주의 열감수성 alkaline phosphatase 성질)

  • Park, Moon-Kyung;Jin, Deuk-Hee;Kim, Joong-Kyun;Kong, In-Soo;Kim, Kwang-Hyeon;Hong, Yong-Ki
    • Journal of Life Science
    • /
    • v.6 no.3
    • /
    • pp.198-203
    • /
    • 1996
  • A thermolabile alkaline phosphatase has been purified through steps of osmotic shock, ammonium sulfate salting-out, and DAEA-cellulose chromatography from the cultured broth of the marine Vibrio sp. M-96 strain. The optimal temperature for the enzyme activity was 35$\circ$C. The optimal pH was pH11.0, and the range of pHstability was pH10.4 to 12.0. Thermal inactivation occured within 6 mintes at 60$\circ$C. The enzyme was considerably inactivated by 0.1mM concentrations of Hg$^{2+}$, Ni$^{2+}$ and Zn$^{2+}$, whereas activated up to 234% by 1mM of Mn$^{2+}$. The activation energy and deactivation energy by the Arrhenius equation were 4.02 Kcal/mol and 9.098 Kcal/mol, respectively. The Km and Vmax values of the enzyme for p-introphenylphosphate were found to be 0.0465mM and 0.001334mM/min, respectively. Active form of the enzyme had a molecular weight of 57,000 dalton determined by the Sephadex G-200 gel filtration method.

  • PDF

Purification and Characterization of Alkaline Invertase from the Hypocotyls of Mung Bean (Phaseolus raiatus L.) (녹두의 하배축에서 분양한 Alkaline lnvertase의 정제와 특성)

  • Young-Sang Kim
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.349-357
    • /
    • 1995
  • The alkaline invertase ($\beta$-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was isolated and characterized from the hypocotyls of mung bean (Phaseolus radiatus L.). The enzyme was purified by consecutive step using diethylaminoethyl (DEAE)-cellulose anion exchange, 1st Sephadex G-200, DEAE-Sephadex A50 and 2nd Sephadex G-200 chromatography. The overall purification was about 77-fold with a yield of about 6%. The finally purified enzyme exhibited a specific activity of about 48 $\mu$mol of glucose produced mg-1 protein min-1 at pH 7.0 and appeared to be a single protein by nondenaturing polyacrylamide gel electrophoresis (PAGE). The enzyme had the native molecular weight of 450 kD and subunits molecular weight of 63 kD and 38 kD as estimated by Sephadex G-200 chromatography and SDS-PAGE, respectively, suggesting that the enzyme is a heteromultimeric protein composed of two types of subunits. On the other hand, the enzyme appeared to be not a glycoprotein according to the results of Con A chromatography and glycoprotein staining. The enzyme had a Km for sucrose of 19.7 mM at pH 7.0 and maximum activity around pH 7.5. The enzyme was most active with sucrose as substrate, compared to raffinose, cellobiose, maltose and lactose. These results indicate the alkaline invertase is a $\beta$-fructofuranosidase.

  • PDF

Partial Purification and Characterization of the Alkaline Protease from Baccillus sp. (Bacillus sp.가 생산하는 호알카리성 Protease의 부분정제 및 특성)

  • 안장우;오태광;박용하;박관하
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.344-351
    • /
    • 1990
  • An alkalophilic microoganism producing a detergent-resistant alkaline protease was isolated from soil and identified as Baeiltus sp. The alkaline protease has been partially purified by ammonium sulfate fractionation, DEAE-Cellulose, CM-Cellulose and Sephdex G-100 column chromatography. The purified alkaline protease was highly active at pH 12-13 toward casein and stable at pH values from 6 to ll. The optimum temperature for the enzyme reaction was $55^{\circ}C$. The enzyme was completely inactivated by diisopropyl fluorophosphate (DFP) indicating that the enzyme was serine protease, but considerabiy stable in the presence of surface active agents.

  • PDF

Extractive Separation of an Alkaline Protease Using Reversed Micelles (역미셀을 이용한 Alkaline Protease의 추출분리)

  • 윤현희
    • KSBB Journal
    • /
    • v.5 no.4
    • /
    • pp.411-414
    • /
    • 1990
  • The extraction behavior of an alkaline protease using reversed micelles was investgated. The reversed micellar solution consisted of AOT in isooctane. It was found that distribution of arkaline protease into the organic phase increased at lower pH, lower ionic strength, and higher AOT concentration. When the real fermentation broth was extracted of alkaline protease, an activity yield of 20% and a purification factor of 2.0 were obtained.

  • PDF

EFFECT OF ALKALINE HYDROGEN PEROXIDE TREATMENT OF RICE STRAW ON IN SACCO RUMINAL DIGESTIBILITY

  • Myung, K.H.;Kennelly, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • The objective of this experiment was to compare the effect of pH-regulated alkaline hydrogen peroxide (AHP) treatment of rice straw with those of sodium hydroxide (NaOH) and anhydrous ammonia ($NH_3$) treatments on in sacco digestivility. Three non-lactating ruminally cannulated Holstein cows were fed a diet containing 90% forage and 10% concentrate on a dry matter (DM) basis. The AHP treatment significantly (p<0.05) reduced acid detergent lignin content of the straw, resulting in significant (p<0.05) increase of neutral detergent fiber (NDF), acid detergent fiber (ADF) and cellulose concentrations. Disappearance rates of DM and NDF of the straw significantly (p<0.05) increased at the incubation time of 24 h. On the other hand, those of ADF and cellulose were significantly (p<0.05) higher at the incubation time of 12 h than those of the others. The effective degradability of DM(EDDM), NDF(EDNDF), ADF(EDADF) and cellulose (EDCE) were determined using in sacco nylon bag technique on the basis of 0.05/h solid outflow rate. The greater differences (p<0.05) of EDDM, EDNDF, EDADF and EDCE were found between AHP treated straw and the others. In general, AHP treatment of the straw recorded higher digestion coefficients than untreated straw as well as NaOH and $NH_3$ treated straws. The results of this study demonstrate that AHP treatment can be used as a effective method for improving the nutritive value of rice straw for ruminants.

Effect of Sarcoplasmic Protein and NaCl on Heating Gel from Fish Muscle Surimi Prepared by Acid and Alkaline Processing (산과 알칼리 공정으로 제조한 어육 수리미의 가열 겔에 미치는 근형질단백질과 NaCl의 영향)

  • 박주동;윤수성;정춘희;조민성;최영준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.567-573
    • /
    • 2003
  • Surimi yields from acid and alkaline processing of 5 fishes were compared to those from conventional processing Effect of sarcoplasmic protein and NaCl on heating gel from acid and alkaline surimi were also investigated by punch test and color. Yield of alkaline surimi was higher than that of conventional surimi. However, the breaking force, deformation and whiteness of heating gel from alkaline surimi were lower than those of heating gel from conventional surimi. The sarcoplasmic protein increased a breaking force and a deformation of gel. A breaking force was decreased, but deformation not significantly with NaCl concentration. Myosin heavy chain (MHC) and actin were greatly degraded in acid processing. Alkaline process for surimi is a valuable way of increasing the utilization of frozen and pelagic fishes, and making kamaboko-type products.

Physiological Regulation of an Alkaline-Resistant Laccase Produced by Perenniporia tephropora and Efficiency in Biotreatment of Pulp Mill Effluent

  • Teerapatsakul, Churapa;Chitradon, Lerluck
    • Mycobiology
    • /
    • v.44 no.4
    • /
    • pp.260-268
    • /
    • 2016
  • Regulation of alkaline-resistant laccase from Perenniporia tephropora KU-Alk4 was proved to be controlled by several factors. One important factor was the initial pH, which drove the fungus to produce different kinds of ligninolytic enzymes. P. tephropora KU-Alk4 could grow at pH 4.5, 7.0, and 8.0. The fungus produced laccase and MnP at pH 7.0, but only laccase at pH 8.0. The specific activity of laccase in the pH 8.0 culture was higher than that in the pH 7.0 culture. At pH 8.0, glucose was the best carbon source for laccase production but growth was better with lactose. Low concentrations of glucose at 0.1% to 1.0% enhanced laccase production, while concentrations over 1% gave contradictory results. Veratryl alcohol induced the production of laccase. A trace concentration of copper ions was required for laccase production. Biomass increased with an increasing rate of aeration of shaking flasks from 100 to 140 rpm; however, shaking at over 120 rpm decreased laccase quantity. Highest amount of laccase produced by KU-Alk4, 360 U/mL, was at pH 8.0 with 1% glucose and 0.2 mM copper sulfate, unshaken for the first 3 days, followed by addition of 0.85 mM veratryl alcohol and shaking at 120 rpm. The crude enzyme was significantly stable in alkaline pH 8.0~10.0 for 24 hr. After treating the pulp mill effluent with the KU-Alk4 system for 3 days, pH decreased from 9.6 to 6.8, with reduction of color and chemical oxygen demand at 83.2% and 81%, respectively. Laccase was detectable during the biotreatment process.

Investigation of Gold and Silver Nanoparticles as Acid-base pH Indicators and Their Transition pH Ranges

  • Jung, Byoung Gue;Jo, Jihee;Yu, Jin Won;Lim, Jong Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3595-3600
    • /
    • 2014
  • Monitoring of pH, especially under highly alkaline conditions, is necessary in various processes in the industrial, biotechnological, agricultural, and environmental fields. However, few pH indicators that can function at highly alkaline levels are available, and most of which are organic-based pH indicators. Several years ago, it was reported that gold nanoparticles prepared using trisodium citrate dihydrate were rapidly aggregated at pH values higher than ~12.7. A shift of surface plasmon resonance for such aggregated gold nanoparticles can be applied to pH indicators, allowing for the substitution of traditional organic-based pH indicators. The most important characteristic of pH indicators is the transition pH range. Herein, gold and silver nanoparticles are prepared using different reducing agents, and their transition pH ranges are examined. The results showed that all nanoparticles prepared in this study exhibit similar transition pH ranges spanning 11.9-13.0, regardless of the nanoparticle material, reducing agents, and concentration.

X-Ray Diffraction Studies of Uranyl Hydrolysis Precipitates Synthesized in Neutral to Alkaline Aqueous Solutions

  • 박용준;표형렬;김원호;전관식
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.10
    • /
    • pp.925-929
    • /
    • 1996
  • Uranyl hydrolysis precipitates were obtained by increasing pH value of aqueous uranyl solution in the range of neutral to alkaline pH value and their phase transformation during the solubility experiment under various conditions has been examined. The precipitates formed in the hydrolysis reaction of uranyl ion had a layered structure such as a meta-schoepite phase, a schoepite structure, or a mixed phase of meta-schoepite and schoepite. Phase transformation between them was strongly dependent on the pH value at which the precipitate was formed. The distance between the layers in meta-schoepite or schoepite phase was ∼7.35 Å, and it was increased with the pH value at which the precipitate was synthesized as well as the pH values of the aqueous solution. The phase transformation from a meta-schoepite to schoepite was fast for the precipitates formed at low pH values, however, it was not the case for the precipitates formed at high pH values. A small difference of pH value in aqueous solution gave a great change on its solubilities near pH 9.7, because a layered structure of the precipitates became amorphous above that pH value. Greater solubility for the precipitate formed at higher pH value can be explained from the fact that the precipitates formed at low pH value had a better crystallinity and also that the precipitates formed at higher pH value has a slower rate of crystallization.