• Title/Summary/Keyword: Alkaline Stabilizers

Search Result 6, Processing Time 0.017 seconds

Nutritive Quality of the Crude Organic Fertilizer Produced with Coastal Aquaculture-Ground Bottom Sediments, Organic Wastes and Alkaline Stabilizers (유기성 폐기물과 알칼리 안정화제가 첨가된 연안 양식장 퇴적물 조비료의 영양성분 조성)

  • 김정배;강창근;이근섭;박정임;이필용
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1291-1298
    • /
    • 2002
  • To utilize coastal aquaculture ground bottom sediment in which concentrations of harmful pollutants are low and organic content is high as an organic fertilizer alkaline stabilizers such as CaO, Oyster shell, Mg(OH)$_2$ were added to the bottom sediment organic additives of livestock or food wastes. Nutritive qualities of crude fertilizers were measured to examine effects of alkaline stabilizers and organic waste additions. The Mg(OH)$_2$-added crude fertilizer had significantly lower total carbon(T-C) and nitrogen(T-N) content, reflecting the dilution effect due to great amount of Mg(OH)$_2$ addition. However, the addition of oyster shell had no significant effect on the T-C and T-N content of the fertilizer. $P_2O_5$ and $K_2$O content was considerably higher in the mixed sample of aquaculture ground bottom sediments and livestock wastes than in the mixture of the sediments and food wastes, resulting from higher $P_2O_5$ and $K_2$O content in livestock wastes. Addition of Mg(OH)$_2$ increased the content of MgO In the crude fertilizer but significantly reduced the content of other nutritive elements such as $P_2O_5$, $K_2$O and CaO. Addition of oyster shell as an alkaline stabilizer seemed to have the advantage of saving time and expenses far dryness due to its role as a modulator of water content. Moreover, additions of effect Mg(OH)$_2$ decreased the concentrations of heavy metals in the fertilizer by the dilution while additions of oyster shell had no influence on heavy metal concentrations in the fertilizer.

The Hybrid Formation between Aspergillus oryzae var. oryzae and Penicillium chrysogenum by Nuclear Transfer and the Production of Alkaline Protease. (핵전이에 의한 Aspergillus oryzae var. oryzae와 Penicillium chrysogenum의 잡종형성 및 Alkaline Protease생성)

  • 양영기;강희경;임채영;문명님
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.290-296
    • /
    • 1998
  • Interspecific hybrids between Aspergillus oryzae var. oryzae and Penicillium chrysogenum (Tyr$\^$-/), high alkaline protease producing fungi, were obtained by nuclear transfer technique. Nuclei isolated from the wild type Aspergillus oryzae var. oryzae strain were transferred into auxotrophic Penicillium chrysogenum mutants and selected the new strains showing an increased protein degrading capability. Maximum production of protoplasts were obtained by 1% Novozym 234 at $30^{\circ}C$ for 3 hours and the most effective osmotic stabilizers for the isolation of protoplasts were 0.6M KCl. Frequencies of hybrid formation by nuclear transfer were 1.3${\times}$10$\^$-3/∼2.8${\times}$10$\^$-3/. They could be suggested as an aneuploid by the observation of genetic stability, conidial size, DNA content, and nuclear strain. The hybrids showed 1.1~2.2 fold higher alkaline pretense activities than parental strains.

  • PDF

Study of Alkaline Peroxide Mechanical Pulp Made from Pinus densiflora (국내산 소나무로 제조된 APMP 특성 연구)

  • Lee, Ji-Young;Nam, Hyegeong;Kim, Chul-Hwan;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Lee, Min-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.100-110
    • /
    • 2016
  • Alkaline Peroxide Mechanical Pulping (APMP) of Pinus densiflora harvested from domestic mountains was explored. APMP contributes to various advantages including pulp quality, elimination of the need for a bleaching process, and energy savings. Sequential treatment of impregnation of bleaching chemicals and refining not only overcome the concern of alkaline darkening of wood chips during chemical impregnation, but it also brightens the chips to the desired brightness levels suitable for writing and printing papers. APMP pulping from Pinus densiflora was greatly influenced by the dosage levels of hydrogen peroxide and sodium hydroxide. Alkaline peroxide treatment was carried out by applying one of three levels of hydrogen peroxide (1.5, 3, and 4.5% based on the oven-dried weight of the wood chips) and one of three levels of sodium hydroxide (1.5, 3, and 4.5% based on the oven-dried weight of the wood chips). Other chemicals including a peroxide stabilizers and metal chelation were constantly added for all treatments. Chemical treatment with a liquor-to-wood ration of 9:1 was carried out in a laboratory digestor. Compared to BTMP, APMP pulping displayed outstanding characteristics including the less requirement of refining energy, the better improvement of tensile strength, the more reduction of shives, and the greater increase of pulp brightness. In particular, when 4.5% of hydrogen peroxide with impregnation during 90 minutes was used, the brightness of APMP reached 64.9% ISO. Even though bulk of APMP was decreased with the increase of sodium hydroxide, a better and improved balance could be achieved between optical and strength properties. The spent liquor obtained from the discharge of the impregnation process at the dosage level of 4.5% hydrogen peroxide exhibited an equal level of residual peroxide with BTMP. In conclusion, APMP pulping showed successful results with Pinus densiflora due to its better response to the development of optical and physical properties compared to TMP pulping.

Effect of pH, Chemical Composition and Additives on Stability of Soymilk Suspension (pH, 화학적 조성 및 첨가제가 두유(豆乳)의 현탁안정성에 미치는 영향)

  • Kim, Eun-Soo;Chung, Seong-Soo;Jo, Jae-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.319-324
    • /
    • 1990
  • The effects of pH, protein and fat content, addition of emulsifiers, stabilizer, sugar, salt and calcium salt on the stability of soymilk suspension were investigated by analyzing the cream separated and precipitates of soymilk which is prepared by various conditions. In the alkaline region of pH, soymilk showed a good stability of the suspension and particularly, above pH 10, precipitates were not formed. When 1.5% of palm oil with 0.4% of glycerine monostearate was added to soymilk in the hydrophile-lipophile balance (HLB) value of 4 to 7, resulted maximal emulsion stability occured below H LB 6. The stability was decreased with increasing the fat concentration and soy oil showed better emulsion stability than that of palm oil. Among the commercial stabilizers, 0.03% of carrageenan was most effective. The stability was not decreased by addition of sugar up to 3% while it was decreased by addition of sodium salt and calcium salt at low level.

  • PDF

A study on preparation of luminol reagents for crime scene investigation (범죄현장 조사용 루미놀 시약의 제조법에 관한 연구)

  • Lim, Seung;Kim, Jung-mok;Jung, Ju Yeon;Lim, Si-Keun
    • Analytical Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.47-56
    • /
    • 2018
  • Finding the blood left at a crime scene is very important to reconstruct or solve a criminal case. Although numerous reagents have been developed for use at crime scenes, luminol is the most representative. Bluestar Forensic has been used in recent years, but is expensive and cannot be stored after preparation. This study aims to develop a new luminol reagent that can be stored for a long period of time while maintaining the chemiluminescence intensity at the level of Bluestar Forensic. Because luminol dissolves well in aqueous alkaline solutions, the use of sodium hydroxide in the preparation of luminol reagents can promote the decomposition of hydrogen peroxide. Magnesium sulfate, sodium silicate, and potassium triphosphate have been used as hydrogen peroxide stabilizers. The effects of the addition of these substances on the chemiluminescence emission intensity and the storage period of the luminol reagents were confirmed. The addition of a hydrogen peroxide stabilizer was shown to have no significant affect on the chemiluminescence emissions intensity or stabilized pH of the luminol reagent during storage. It also greatly increases the shelf life of the reagents. The use of magnesium sulfate as a hydrogen peroxide stabilizer is the most appropriate. When sodium perborate is used instead of hydrogen peroxide as an oxidizing agent, there is no significant change in the sensitivity and chemiluminescence emissions intensity, but the storage period is shortened. However, after the reaction with blood, the pH of the mixed solution does not increase significantly, and is judged to be more suitable than a reagent made of hydrogen peroxide.

Studies on the Asplund Pulping of Wood for Paper Pulp(II) -Effect of some cellulose stabilizers added to the alkaline chip-treatment and the peroxide bleaching on the quality of larchwood asplund pulps- (제지용(製紙用) 아스플룬드펄프 제조(製造)에 관한 연구(II) -일본 잎갈나무��의 알카리 전처리(前處理)와 아스플룬드 펄프의 과산화물(過酸化物) 표백(漂白)에서 셀룰로오스 안정제(安定劑)의 영향(影響)에 관하여-)

  • Lim, Kie-Pyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.7-15
    • /
    • 1981
  • A Japanese larch has been reforested very much in Korea, but it is not used as a wood resources for paper pulp by now. So this study is carried out to utilize the larchwood for paper pulp manufacture through the Asplund pulping process. The experiment on increasing in the brightness of the pulp is made through the addition of $MgSO_4$, $ZnSO_4$, $Al_2(SO_4)_3$, and KI as a cellulose stabilizer in chip treatment with caustic soda which is followed by high-temperature defibration and conventional peroxide bleaching (5% NaOH plus 2% additive salt per wood in cold pretreatment), or in high-consistency (30%) pulp bleaching of hydrogen peroxide and peracetic acid (100% acitve oxygen per lignin) for conventional one. The results obtained are as follows: 1. The solution of 0.5% additive salts had different pH by the sort of bases that was pH 5.7 in $MgSO_4$, liquor, pH 4.9 for $ZnSO_4$, and pH 2.9 for $Al_2(SO_4)_3$, and in the precepitation of bases which ranged to pH 6-13 for $MgSO_4$, pH 5-12 for $ZnSO_4$, and pH 3-10 for $Al_2(SO_4)_3$. 2. The cellulose stabilizer affective in high-consistency peroxide bleaching was KI, $MgSO_4$, and $ZnSO_4$, but has made a little improvement in de lignification and brightness of pulp in comparison with no addition. 3. The higher alkalinity in the chip treatment has made the higher strength and brightness of larchwood Aspiund pulp instead of downing the pulp yield. And the effective compound for cellulose stabilizer in caustic soda pretreatment of chip was $ZnSO_4$, $Al_2(SO_4)_3$ and KI in order for the conventional peroxide bleaching after Asplund pulping. 4. Therefore, the more effective additives for cellulose stabilization in high-temperature defibration of larchwood suppose to be $ZnSO_4$, $Al_2(SO_4)_3$, and KI, while KI and $MgSO_4$ for peroxide bleaching.

  • PDF