• Title/Summary/Keyword: Alkaline Electrolyte

Search Result 91, Processing Time 0.033 seconds

Air Pollution Protection onboard by Seawater and Electrolyte

  • An Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.93-101
    • /
    • 2006
  • This research makes a new attempt to apply the activated seawater by electrolysis in the development of two-stage wet scrubber system to control the exhaust gas of large marine diesel engines. First, with using only seawater that is naturally alkaline (pH typically around 8.1). the $SO_2\;and\;SO_3$ are absorbed by relatively high solubility compared to other components of exhaust pollutants, and PM (Particulate Matter) is removed through direct contact with sprayed seawater droplets. Besides, the electrolyzed alkaline seawater by electrolysis, which contains mainly NaOH together with alkali metal ions $(i.e.\;Na^+,\;Mg^{2+},\;Ca^{2+})$, is used as the absorption medium of NOx and $CO_2$. Especially, to increase NOx absorption rate into the alkaline seawater. nitric oxide (NO) is adequately oxidized to nitrogen dioxide $(NO_2)$ in the acidic seawater, which means both volume fractions are adjusted to identical proportion. The results found that the strong acidic seawater was a valid oxidizer from NO to $NO_2$ and the strong alkaline seawater was effective in $CO_2$ absorption In the scrubber test, the SOx reduction of nearly $100\%$ could be achieved and also led to a sufficientPM reduction. Hence, the author believes that applying seawater and its electrolyte would bring the marine air pollution control system to an economical measure. Additionally it is well known that NOx and SOx concentration has a considerable influence on the $N_2O$ emission of green house gas. Although the $N_2O$ concentration exhausted from diesel engines is not as high, the green house gas effect is around 300 times greater than an equivalent volume of $CO_2$. Therefore, we investigated the $N_2O$ removal efficiency with using the electrolyzed seawater too. Finally this research would also plan to treat the effluent by applying electro-dialysis and electro-flotation technique s in the future.

Operational Characteristics of High-Performance kW class Alkaline Electrolyzer Stack for Green Hydrogen Production

  • Choi, Baeck B.;Jo, Jae Hyeon;Lee, Taehee;Jeon, Sang-Yun;Kim, Jungsuk;Yoo, Young-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.302-307
    • /
    • 2021
  • Polymer electrolyte membrane (PEM) electrolyzer or alkaline electrolyzer is required to produce green hydrogen using renewable energy such as wind and/or solar power. PEM and alkaline electrolyzer differ in many ways, instantly basic materials, system configuration, and operation characteristics are different. Building an optimal water hydrolysis system by closely grasping the characteristics of each type of electrolyzer is of great help in building a safe hydrogen ecosystem as well as the efficiency of green hydrogen production. In this study, the basic operation characteristics of a kW class alkaline water electrolyzer we developed, and water electrolysis efficiency are described. Finally, a brief overview of the characteristics of PEM and alkaline electrolyzer for large-capacity green hydrogen production system will be outlined.

Current Patents and Papers Research Trend of Fuel Cell Membrane (특허 및 논문 게재 분석을 통한 연료전지용 전해질막의 연구동향)

  • Woo, Chang Hwa
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.407-420
    • /
    • 2016
  • The fuel cell technology as a green energy source has been actively studied to solve energy shortages and pollution problems. The generating efficiency of fuel cell is high because the electricity is directly produced by using hydrogen and oxygen and the additional power generator is not needed. The key technology is the manufacturing process of polymer electrolyte membranes for polymer electrolyte membrane fuel cell (PEMFC) system. The Nafion, perfluoro-based polymeric membrane is mainly used as a polymer electrolyte membrane. However, the Nafion is expensive and rapidly decreases the performance of Nafion at high temperature. So, many researchers are lively studying new alternative electrolyte membranes. In this review, through the technology competitiveness evaluation of patents and papers, the frequencies of presentation are filed by country, institution and company. In addition, polymer electrolyte membrane fuel cell, direct methanol fuel cell and alkaline fuel cell are also filed.

Preparation of pore-filling membranes for polymer electrolyte fuel cells and their cell performances (고체 알칼리 연료전지용 음이온 교환 세공충진막의 제조 및 특성)

  • Choi, Young-Woo;Park, Gu-Gon;Yim, Sung-Dae;Lee, Mi-Soon;Yang, Tae-Hyun;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.150-153
    • /
    • 2009
  • Anion exchange polymer electrolyte pore-filling membranes consisting of the whole hydrocarbon materials were prepared by photo polymerization with various quaternary ammonium cationic monomers and characterized on the properties for applying to solid alkali fuel cell (SAFC). Hydrocarbon porous substrates such as polyethylene were used for the preparation of the pore-filling membranes. The hydroxyl ion conductivity of the polymer electrolyte membranes prepared in this research was dependent on the composition ratio of an electrolyte monomer and crosslinking agents used for polymerization. Furthermore, these pore-filling membranes have commonly excellent properties such as smaller dimensional affects when swollen in solvents, higher mechanical strength, lower fuel crossover through the membranes, and easier preparation process than those of traditional cast membranes.

  • PDF

Corrosion Properties of Al-(Ga, Sn, Mn) Alloy Anodes for an Al-air Battery in 4 M KOH Aqueous and Ethanol Solutions (4 M KOH 수용액 및 에탄올 용액에서 알루미늄 공기 전지용 Al-(Ga, Sn, Mn) 합금 음극의 부식 특성)

  • Lee, Han-Ok;Park, Chan-Jin;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.71-75
    • /
    • 2011
  • Corrosion properties of Al-0.3Ga-0.3Sn, Al-0.3Mn-0.3Ga, and Al-0.3Mn-0.3Sn alloys were examined to develop an anode material for Al-air battery with alkaline aqueous or ethanol electrolyte. The results of potentiodynamic polarization tests showed that the electrode potential of the Al alloys were lower than the pure Al, implying the cell voltage can be increased by using one of these alloys for an anode in 4 M KOH aqueous solution. The corrosion rate appeared to be increased by alloying Ga but to be reduced by Sn and Mn in the aqueous solution. The ethanol solution is expected to improve the cell performance in that the electrode potential and the corrosion rate of Al were lower in ethanol solution than in aqueous solution. However the Al-(Ga, Sn, Mn) alloys are not favorable in ethanol solution because of the high potential and corrosion rate.

Development of EDLC using aqueous polymeric gel electrolytel (수용성 고분자 젤 전해질을 이용한 전기이중층 커패시터의 개발)

  • Oh, Kil-Hun;Kim, Han-Joo;Choi, Weon-Kyung;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.581-584
    • /
    • 2001
  • For the first time, a totally solid state electric double layer capacitor has been fabricated using an alkaline polymer electrolyte and an activated carbon powder as electrode material. The polymer electrolyte serves both as separator as well as electrode binder. The capacitor has a three-layer structure; electrode-electrolyte-electrode. A cyclic voltammetry and constant current discharge have been used for the determination of the electro chemical performance of capacitors.

  • PDF

Impedance analysis of electrochemical systems using an ion-conducting polymer electrolyte membrane (전도성 고분자 전해질막을 이용하는 전기화학적 시스템의 임피던스 해석)

  • Park, Jin-Soo;Moon, Seung-Hyeon;Kim, Chang-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.1-8
    • /
    • 2004
  • Ion-conducting polymer electrolyte membranes (PEMs) have recently used in developing fuel cell or solar cell for portable, mobile and residential applications [1]. Polymer electrolyte membrane fuel cell (PEMFC), direct methanol fuel cell (DMFC), alkaline electrolyte fuel cell (AFC) and dye-sensitized solar cell have been employing the ion-conducting PEMs to complete their electrical circuits to produce electricity.(omitted)

  • PDF

Electrochemical Oxidation of Hydrazine in Membraneless Fuel Cells

  • Durga, S.;Ponmani, K.;Kiruthika, S.;Muthukumaran, B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.73-81
    • /
    • 2014
  • This paper describes the continuous flow operation of membraneless sodium perborate fuel cell using acid/alkaline bipolar electrolyte. Here, hydrazine is used as a fuel and sodium perborate is used as an oxidant under Alkaline-acid media configuration. Sodium perborate affords hydrogen peroxide in aqueous medium. In our operation, the laminar flow based microfluidic membranleless fuel cell achieved a maximum power density of $27.2mW\;cm^{-2}$ when using alkaline hydrazine as the anolyte and acidic perborate as the catholyte at room temperature with a fuel mixture flow rate of $0.3mL\;min^{-1}$. The simple planar structured membraneless sodium perborate fuel cell enables high design flexibility and easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications.