• Title/Summary/Keyword: Alkali-Lignin

Search Result 82, Processing Time 0.026 seconds

Effect of Gamma Ray on Molecular Structures of Alkali-Lignin (감마선이 알칼리 리그닌의 분자구조에 미치는 영향)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.249-252
    • /
    • 2011
  • Lignin is one of the natural macromolecules. Every year large amount of lignin arises from the cellulose production as a by-product worldwide. The use of lignin as a precursor to carbonaceous materials has gained interest due to its low cost and high availability. Therefore, we improved the properties of alkali-lignin by exposing to gamma ray in this study. The alkali-lignin is irradiated by Gamma ray irradiation with varying doses. The char yields of alkali-lignin were investigated by increasing up to 50 kGy. The cross-linking and bond scission of alkali-lignin occur simultaneously during gamma ray irradiation. The crosslinking was predominantly accelerated by gamma ray irradiation up to 50 kGy. Bond scission predominantly occurs between 50 and 500 kGy. ESCA analysis indicated that the alcoholic carbon increase up to 50 kGy. Solution viscosity was increased as absorbed dose increased up to 20 kGy. In addition, the aromatic ring was not influenced by irradiation at doses ranging from 20 to 500 kGy as shown in FT-IR results.

Chemical Composition and Alkaline Pulping of a Stem of Red Pepper (Capsium annuum L.) (고추 줄기의 화학 조성분 및 알칼리 펄프화)

  • Kim, Chul Hyun;Kim, Young Yook;Park, Soung Bae;Eom, Tae Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.26-32
    • /
    • 2004
  • Chemical compositions and chemical structure of lignin and alkali cooking condition and fiber length of red pepper were investigated and compared to those of woods. The chemical compositions of red pepper were higher component of extraction than that of wood. The contents of carbon and hydrogen of Klason lignin in red pepper were similar to that of pine and birch wood. On the other hand, the contents of oxygen and nitrogen of Klason lignin in the red pepper were higher than that of wood. The result of nitrobenzene oxidation shows that Klason lignin of red pepper was similar to lignin of softwood. The best alkali cooking condition of red pepper was 0.2%-anthraquinone, active alkali of 20% and liquor ratio of 1:7. The fiber length of red pepper was about 0.47 mm. Therefore, the red pepper fiber will be able to use special purpose of short fiber.

Development of Near-Critical Water Reaction System for Utilization of Lignin as Chemical Resources

  • Eom, Hee-Jun;Hong, Yoon-Ki;Park, Young-Moo;Chung, Sang-Ho;Lee, Kwan-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.251.2-251.2
    • /
    • 2010
  • Plant biomass has been proposed to be an alternative source for petroleum-based chemical compounds. Especially, phenolic chemical compounds can be obtained from lignin by chemical depolymerization processes because lignin consists of complex aromatic polymer such as trans-p-coumaryl, coniferyl and sinapyl alcohols, etc. Phenolic chemical compounds from lignin were usually produced in super critical water. However, we applied Near-critical water (NCW) system because NCW is known as a good solvent for lignin depolymerization. Organic matter like lignin can be solved in NCW system and the system has a unique acid-base property without conventional non-eco-friendly chemicals such as sulfuric acid and sodium hydroxide. In this work, we tried to optimize the NCW depolymerization system by adjusting the processing variables such as reaction time, temperature and pressure. Moreover, the amount of additional phenol was optimized by changing the molar ratio between water and phenol. Phenol was used as capping agent to prevent re-polymerization of active fragment such as formaldehyde. Alkali-lignin was used as a starting material and characterized by a Solid State 13C-NMR, FT-IR and EA (Elemental Analysis). GC-MS analysis confirmed that o-cresol, p-cresol, anisole and 4-hydroxyphathalic acid were the main product and they were quantitatively analyzed by HPLC.

  • PDF

Analysis of Chemical and Physical Characteristics of Log Woods for Oak Mushroom Production Depending on Cultivation Periods and Steam Explosion Treatment (표고버섯 골목의 사용연수에 따른 화학적, 물리적 성상 및 폭쇄처리 후 변화 관찰)

  • Koo, Bon-Wook;Park, Jun-Yeong;Lee, Soo-Min;Choi, Don-Ha;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.77-86
    • /
    • 2005
  • In order to investigate the ability of log wood for oak mushroom production as a source of an alternative energy, both chemical and physical characteristics of log wood were investigated according to the cultivation periods. Also, both chemical and physical characteristics of material that treated by steam explosion were investigated to confirm the pretreatment effect by remaining enzyme as a control. The contents of ash, water-, alkali- and organic soluble extracts have been increased after the inoculation. It appeard that holocellulose contents substantially decreased and the contents of lignin as another main component of wood remained constant after the inoculation. However this result implied that indeed, a sufficient amount of lignin has been degraded paritially by enzymes of oak mushroom Lentinus edodes if we consider that the amount of holocelulose was substantially reduced. It also indicated that the degree of degradation gradually progressed but crystallinity decreased after the inoculation. The contents of water-, alkali- and organic soluble extracts have been increased by steam explosion. Holocellulose contents increased within narrow limits and lignin contents remained constant. However the contents of holocellulose and lignin have been decreased by steam explosion, considering that the amount of other extractives was relatively increased. The degree of crystallinity and lignin contents reduction by steam explosion was almost similar to the result obtained by increasing cultivation periods. According to the results, log woods for mushroom production have a potential as material for developing alternative energy.

The Kinetics of Delignification in Oxygen·Alkali pulping (효소(酵素)·알칼리 증해(蒸解)의 탈(脱)리그닌에 관(関)한 동역학적(動力學的) 분석(分析))

  • Jo, Byoung Muk;Shin, Dong So
    • Journal of Korean Society of Forest Science
    • /
    • v.56 no.1
    • /
    • pp.26-50
    • /
    • 1982
  • In order to obtain more detailed information concerning the degradation of lignin in the oxygen alkali pulping single stage isothermal delignification of pine wood meal (Pinus koraiensis S. et Z.) was studied in the oxygen alkali system at five temperature level ($110^{\circ}C$, $120^{\circ}C$, $130^{\circ}C$, $140^{\circ}C$, $150^{\circ}C$) for 60 min.. The rate constant, activation energy, oxygen and alkali consumption during the oxygen alkali delignification were determined by the kinetic method. The 2/5 of total lignin was eliminated at the start of the reaction. The delignification rate constant was about 3 times that of caustic soda pulping. The activation energy was about 1/3 lower than in caustic soda pulping. Like oxygen consumption, alkali consumption was also rapid early at the reaction and almost ceased after about 10 min.. The degradation reaction of lignin was strongly dependent upon the pH decrease of the cooking liquor by organic acid generated in pulping. The lignin in the oxygen alkali pulping degraded into lover molecular weight and had more hydrophillic properties. The methoxyl group decreased considerably at the first of oxygen alkali delignification, while the carbonyl, carboxyl and phenolic hydroxyl group increased rapidly.

  • PDF

Preparations Purified Cellulose from Rice Hull (왕겨기반 고순도 셀룰로오스의 제조)

  • Lee, Young-Ju;Sung, Yong-Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.79-85
    • /
    • 2012
  • In this study, purified cellulose was prepared from rice husk which is one of the major agricultural residues in Korea. The various bleaching processes such as ozone bleaching, $ClO_2$ bleaching and $H_2O_2$ bleaching were applied to remove residual lignin and impurities. In order to increase the contents of ${\alpha}$-cellulose contents, the effects of acid and alkali treatments were evaluated. Although the multi stages of the bleaching processes resulted in less than 0.5 % residual lignin contents, the application of ozone leaded to the decrease in DP(degree in Polymerization) and ${\alpha}$-cellulose contents. The alkali treatment after bleaching processes resulted in pure cellulose which showed more than 98% of ${\alpha}$-cellulose contents.

Alkali Pulping Charactics of Moso Bamboo(Phyllostachys pubescens Mazel) with Various Ages (맹종죽의 죽령별 알칼리 펄프화 특성)

  • Yoon, Seung-Lak;Jo, Hyun-Jin;Park, Byung-Su;Kang, Ha-Young;Kang, Kyu-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.3 s.116
    • /
    • pp.29-37
    • /
    • 2006
  • To use bamboo in the pulp industry, the anatomical characteristics of 60-day-old, 1-year-old, 2-year-old, and 3-year-old moso bamboo (Phyllostachys pubescens Mazel), and the characteristics of fiber and sheet of alkali pulp made of moso bamboo were investigated. Moso bamboo is composed of metaxylens and parenchyma cells in the inner part of the wall, and thick-walled small bundle sheathes near the outer walls. Moso bamboo showed the heterogeneity in anatomical structure. The longest fibers were shown in the middle part, and the widest width in the inner part. The lignin contents were 14.4% in 60-day-old bamboo, which was not lignified yet. The lignin contents in bamboo above 1 year were approximately 35%. The yields of alkali pulp of moso bamboo were in the range between 41 and 47%, and the yields tend to decrease with the increase of ages. The lignin contents of 60-day-old bamboo were 2.1% and those of bamboo above 1 year showed approximately 4% to 5% increment. The length, width, and curl index of fiber in alkali pulp appeared to be similar in all ages. However, coarseness increased slightly with the increase of bamboo ages. The distribution of long fiber was shown much in 60-year-old bamboo. The optical and mechanical properties of moso bamboo tended to decrease with the increase of bamboo age.

Mechanical Properties of Alkali Treated Kenaf Fiber Filled PP Bio-Composites (알칼리 처리된 Kenaf 섬유가 충전된 Polypropylene/Kenaf 바이오복합재의 기계적 특성)

  • Kim, Samsung;Lee, Byoung-Ho;Kim, Hyun-Joong;Oh, Sei Chang;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.222-230
    • /
    • 2009
  • This study was to investigate the effect of alkali treatment for long kenaf fiber to improve fiber surface characterics by removal of wax, lignin and hemicellulose which affect adversely for matrix union. SEM observation was also studied to check out the interface adhesion improvement by the alkali pre-treatment. From the result, interface coherence increased by 3% alkali pre-treatment and reached a maximum by 5% alkali pre-treatment. However, the 3% the bio-composites treated with 3% alkali was highest tensile and flexural strength than other.

Effect of active alkali concentration on the delignification of Larch UKP (활성(活性) 알칼리 농도(濃度)가 일본잎갈나무 UKP의 탈(脫)리그닌에 미치는 영향(影響))

  • Won, Jong-Myoung;Jo, Byoung-Muk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 1976
  • This study was carried out in order to obtain the effect of active alkali concentration. Sulfidity 25%, maximum temperature 170$^{\circ}C$, cooking time 3hrs., liquor to wood ratio 5 : 1 in the kraft cooking conditions were maintained. Active alkali concentration were varied at intervals of 3% between 12% and 24%. The rates of de lignification increased with an increase in active alkali concentration and beatability, brightness, and strength of pulp also improved. The total pulp yield trand to decrease with an increase of active alkali concentration. The maximum screened pulp yield were obtained between 18% and 21% A.A.. Therefore, the optimum active alkali concentration was 18~21%.

  • PDF

Total Utilization of Woody Biomass by Steam Explosion(I) -Delignification of pine and oak exploded wood- (폭쇄법(爆碎法)을 이용(利用)한 목질계(木質系) Biomass의 종합적(綜合的) 이용(利用)(I) -소나무와 신갈나무 폭쇄재(爆碎材)의 탈(脫)리그닌처리(處理)-)

  • Lee, Jong-Yoon;Chang, Jun-Pok;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.11-20
    • /
    • 1992
  • Steam explosion is one of the most effective pretreatment for fractionating wood. This leads to the total utilization of wood basic components; cellulose, hemicellulose and lignin. The amount of sugar and lignin extracted with the hot water method was very low. The lignin content of residues after extraction with using a sodium hydroxide treatment, increased delignification of carbohydrate as the concentration of alkali was increased. Oak, pretreated with steam exploded at 25kg/$cm^2$ for 6 min. then 1% alkali for 2hrs. showed a delignification rate up to 95%. A sodium chlorite treatment of steam exploded pine and oak also afforded a high deligninfication effect. Pine, treated 10% sodium chlorite for 2hrs. showed high delignification. However, by using a sodium hydroxide treatment, a 2% retreatment for Ihr. after a 2% for 2hrs. afforded remarkable delignification effect on exploded wood at 30kg/$cm^2$ for 9min. and at 35kg/$cm^2$ for 3-6min. In oak, an initial 2hrs. treatment of 2% sodium chlorite was followed by a second 2hrs. treatment at 10%. This showed a delignification rate of 96%.

  • PDF