• 제목/요약/키워드: Alkali treatment

검색결과 476건 처리시간 0.029초

$\beta$-Glucanase를 이용한 보리전분 분리공정의 개발 (Development of Isolation Process of Barley Starch Using $\beta$-glucanase)

  • 서호찬
    • 한국식품조리과학회지
    • /
    • 제15권3호
    • /
    • pp.238-243
    • /
    • 1999
  • 보리로부터 전분을 분리하는 공정을 개발하기 위해 blending 처리, ${eta}$-glucanase 처리 및 alkali 처리를 병행한 최적조건을 검토하였다. Blending 처리에 의한 전처리 효과를 조사한 결과 blending 처리를 6회 했을 경우에 전분수율이 29.7%로 나타냈으며 단백질 3.2%, 지방0.7%, 섬유소 0.4%, 회분 0.4%, ${eta}$-glucan 2.8%를 함유한 전분을 분리하였다 단백질과 ${eta}$-glucan의 용출효과를 조사하기 위해 $eta$-glucanase 처리의 최적조건을 검토한 결과 ${eta}$-glucanase 첨가량 60,000 unit, 맥분과 물의 양1/2, 반응온도 $45^{\circ}C$, pH6.5, 침지 6시간 때에 효과적인 용출을 보였다. 전분의 수율증대와 순도를 높이기 위해 0.2% NaOH 용액을 사용한 alkali 처리조건을 조사한 결과 침지 2시간 때에 전분함량은 ${eta}$-glucanase 처리 후의 전분함량과 비교하여 볼 때 25%가 증가한 76.7%(w/w)로 나타났으며 단백질 0.2%, ${eta}$-glucan 0.1%의 최종 전분을 분리하였다.

  • PDF

소의 사골(四骨) 중(中)의 영양성분 용출에 대한 산, 알카리 처리효과 (The effect of acid and alkali treatment on extracting nutrients from beef bone)

  • 박동연;이연숙
    • 한국식품영양과학회지
    • /
    • 제12권2호
    • /
    • pp.146-149
    • /
    • 1983
  • 사골(四骨) 용출액중(溶出液中) 영양성분 특히 칼슘, 인, 질소성분의 용출량을 증가시키기 위한 기초연구로써 우선 산과 알카리 처리효과를 검토하였다. 산 처리로는 acetic acid를 0~0.8%까지, 알카리 처리로는 sodium bicarbonate를 0~0.05%까지 수준별로 처리하였다. 그 결과는 다음과 같다. 산 처리의 경우 칼슘은 acetic acid 농도가 증가될수록 용출량도 유의적으로 증가되었으며 특히 acetic acid 농도가 0.1% 이상일 때 유의적 증가를 보였으며 인은 0.3% 일 때 용출량이 급격히 증가되었다. Ca/P 비(比)는 acetic acid 농도가 0.01%까지는 1~2를 나타냈지만 그 이상의 모든 처리에서는 2 이상을 나타냈다. ${\alpha}$-amino N과 총 질소는 모두 acetic acid농도가 0.5% 이상일 때 유의적 증가를 보였다. 알카리 처리의 경우는 칼슘, 인, 총 질소는 모든 처리에서 유의적 증가를 나타내지 않았지만 ${\alpha}$-amino N은 sodium bicarbonate 농도가 0.05% 일 때 무처리(無處理)에 비해 유의적 증가를 보였다. (P<0.05) 이상의 결과에서 산 처리에 의해 영양성분의 용출은 현저히 증가되었으나 알카리 처리에 의해서는 크게 증가되지 못했다.

  • PDF

한천의 산 당화에 의한 Furan화합물의 생성 및 제거 (Formation of Furans during the Acid Hydrolysis of Agar and Their Removal by Treatments of Lime, Steam-stripping and Hydrophobic Resins)

  • 김나현;이재원;서영범;윤민호
    • 농업과학연구
    • /
    • 제36권2호
    • /
    • pp.225-232
    • /
    • 2009
  • The ratio of saccharification and formation of furans during the acid hydrolysis of agar with oxalic acid and sulfuric acid were examined base on the contents of the agar and acids. The ratio of saccharification in oxalic acid appeared to be 51~59% somewhat higher than 49~61% of sulfuric acid. Formation of the furans during the acid hydrolysis increased proportional to the contents of agar and acid. The relative formation ratio was high 10~47% for furfural (FUR) and 15~29% for hydroxy-methyl furfural (HMF) in 0.5~1.25% sulfuric acid rather than those of oxalic acid. When comparing the removal efficiency of the furans using an alkali treatment, steam stripping and hydrophobic resins, FUR was eliminated 60% by the alkali treatment, 62~90% by steam stripping and 71~75% by Amberlite XAD4 and 7HP, while HMF was removed to low levels of 10.5%, 4~17% and 13~25%, respectively. The loss of reducing sugar was also observed in process of the removal of furans, and the loss rate was the level of 2~4% in alkali treatment, 11~16% in steam stripping and 7~9% in Amberlite resins.

  • PDF

Treatment of Hydrogen Fluoride Generated from the F-gases Decomposition Processes

  • Park, Jun-Hyeong;Choi, Chang Yong;Kim, Tae-Hun;Shin, InHwan;Son, Youn-Suk
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권4호
    • /
    • pp.190-196
    • /
    • 2016
  • The objective of this study is to obtain the optimal conditions to remove hydrogen fluoride (HF) generated from a variety of F-gas treatment processes. First, we selected $Ca(OH)_2$ and $CaCO_3$ as a reactant among the various alkali salts which have a high removal efficiency and a competitive price by forming a calcium fluoride precipitate. Additionally, various factors were investigated to improve the removal efficiency of HF. The conditions such as the settling time, agitating time and intensity, reaction temperature, and pH were considered as main factors. As a result, in the treatment process to remove HF through Ca-based alkali salts, the optimal conditions were a 120 min settling time, 30 min of agitation at 100 rpm, a pH of 4-8, and a reaction temperature of $40^{\circ}C$.

분상법을 이용한 봉규산염계 다공질 유리의 제조 및 특성;$ZrO_2$와 MgO 첨가 영향 (Preparation and Characterization of Porous Glass in $Na_2O-B_2O_3-SiO_2$ System ; Addition Effects of $ZrO_2$ and MgO)

  • 김영선;최세영
    • 한국세라믹학회지
    • /
    • 제32권3호
    • /
    • pp.385-393
    • /
    • 1995
  • Akali-resistant porous glass was prepared by phase separation in Na2O-B2O3-SiO2 system containing ZrO2 and MgO. ZrO2 was added for alkali-resistance and MgO for anti-cracking during leaching. Optimal content of ZrO2 for alkali-resistance was 7wt% and devitrification by heat treatment resulted from further addition. Pore size and pore volume were decreased and specific surface area was increased with ZrO2 addition due to depression in phase separation. Addition of 3mol% MgO to mother glass containing 7wt% ZrO2 was effective for anti-crack during leaching. In this case, with phase separation at 55$0^{\circ}C$ and 5$25^{\circ}C$ for 20 hrs. crack-free porous glasses could be prepared. The relation between pore size r and heat treatment time t at 55$0^{\circ}C$ was D=25.58+18.16t. According to measurement of gas permeability, the mechanism of gas permeation was Knudsen flow. N2 and He permeability of porous glass which was prepared by heat treatment at 55$0^{\circ}C$ for 20 hrs. were 0.843$\times$10-7mol/$m^2$.s.Pa and 2.161$\times$10-7mol/$m^2$.s.Pa respectively.

  • PDF

초음파를 적용한 PET 직물의 알칼리 가수분해에 관한 연구(I) - 분해속도상수와 활성화 에너지- (A Study on the Alkali Hydrolysis of PET fabric with Ultrasonic Application(I) - Decomposition Rate Constant and Activation Energy -)

  • 서말용;조호현;김삼수;전재우;이승구
    • 한국염색가공학회지
    • /
    • 제14권4호
    • /
    • pp.214-222
    • /
    • 2002
  • In order to give a silk-like touch to PET fabrics, the PET fabrics were treated with NaOH alkaline solution in various conditions. In alkaline treatment, the liquor flow type pilot weight reduction apparatus with magnetostrictive ultrasonic transducer was used for the study. The weight loss of PET fabrics hydrolyzed in 4% and 6% NaOH solution, at $95^\circ{C}$ and $99^\circ{C}$ for 60min. with ultrasonic application showed 3.7~4.6% higher than that of treated fabric without ultrasonic application. From the difference of specific weight loss, the treatment condition of the maximum of hydrolyzation effect appeared at $95^\circ{C}$ in $4^\circ{C}$ and at $90^\circ{C}$ in 6% NaOH solution, respectively. During the alkali hydrolysis of PET fabrics, the decomposition rate constant(k) increased exponentially with the treatment temperature and were not related with ultrasonic cavitation. The activation energy$(E_a)$ in decomposition of PET fabrics were 21.06kcal/mol with ultrasonic application and 21.10kcal/mol without ultrasonic application. The ultrasonic application gave a little higher value of the activation entropy$(\Delta{S}^\neq)$ and a little lower value of Gibbs free energy$(\Delta{S}^\neq)$ compared with not used ultrasonic apparatus.

Double treated mixed acidic solution texture for crystalline silicon solar cells

  • Kim, S.C.;Kim, S.Y.;Yi, J.S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.323-323
    • /
    • 2010
  • Saw damage of crystalline silicon wafer is unavoidable factor. Usually, alkali treatment for removing the damage has been carried out as the saw damage removal (SDR) process for priming the alkali texture. It usually takes lots of time and energy to remove the sawed damages for solar grade crystalline silicon wafers We implemented two different mixed acidic solution treatments to obtain the improved surface structure of silicon wafer without much sacrifice of the silicon wafer thickness. At the first step, the silicon wafer was dipped into the mixed acidic solution of $HF:HNO_3$=1:2 ration for polished surface and at the second step, it was dipped into the diluted mixed acidic solution of $HF:HNO_3:H_2O$=7:3:10 ratio for porous structure. This double treatment to the silicon wafer brought lower reflectance (25% to 6%) and longer carrier lifetime ($0.15\;{\mu}s$ to $0.39\;{\mu}s$) comparing to the bare poly-crystalline silicon wafer. With optimizing the concentration ratio and the dilution ratio, we can not only effectively substitute the time consuming process of SDR to some extent but also skip plasma enhanced chemical vapor deposition (PECVD) process. Moreover, to conduct alkali texture for pyramidal structure on silicon wafer surface, we can use only nitric acid rich solution of the mixed acidic solution treatment instead of implementing SDR.

  • PDF

Structural and gelling properties of very low methoxyl pectin produced by an alkali-treatment

  • Lee, Byung-Hoo;Jung, Ho-Tak;Kim, Hyun-Seok;Yoo, Sang-Ho
    • 한국식품과학회지
    • /
    • 제53권2호
    • /
    • pp.121-125
    • /
    • 2021
  • Very low methoxyl pectin (VLMP) has different physical and rheological properties compared to high and low methoxyl pectins (HMP and LMP). In this study, we produced LMP and VLMP by alkaline de-esterification, and investigated the structural and textural properties. Apple peel pectin was kept at pH 12 using 5.0 M NaOH solution for 3 and 24 h to produce LMP and VLMP, respectively. The molecular weight was decreased due to the removal of an esterified group in the pectin backbones by the alkali treatment, and the VLMP showed a higher calcium ion sensitivity which leads to the production of the gel with increased hardness. The result clearly showed that VLMP has the potential to improve the texture and stability in food products depending on their degree of esterification, and this result can be applied as a functional ingredient in food industrial area application to enhance the current commercial pectins.

첨착 ACF를 이용한 염기성 악취물질의 제거 (Removal of Alkali Odors using Impregnated ACFs)

  • 김기환;김덕기;최봉각;신창섭
    • 한국안전학회지
    • /
    • 제13권1호
    • /
    • pp.92-97
    • /
    • 1998
  • Malodorous gases give discomfort and harm to laborers and residential neighborhoods and therefore, the removing odor materials emitted from plants and industrial facilities is important subject. The main ingredients of alkali odor are $NH_3$ and $CE_3SH$. The adsorption characteristics of odors were studied using four different activated carbon fibers(ACF) and active carbon(AC). Alkali odor was removed by using ACF impregnated with $H_3PO_4$ and $H_2SO_4$ and treated with $HNO_3$ and NaOH. The experimental result showed that ACF has a higher removal efficiency than AC. The adsorption capacity was increased with the impregnation and surface treatment, and $H_2SO_4$ was the best impregnant for the removal of alkali odor.

  • PDF

The Effect of Alkali Metal Ions on Nucleophilic Substitution Reactions of Aryl 2-Furoates with Alkali Metal Ethoxides in Ethanol

  • Dong-Sook Kwon;Jung-Hyun Nahm;Ik-Hwan Um
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권8호
    • /
    • pp.654-658
    • /
    • 1994
  • Rate constants have been measured spectrophotometrically for the nucleophilic substitution reactions of p-and m-nitrophenyl 2-furoates (4 and 5, respectively) with alkali metal ethoxides ($EtO^-M^+$) in absolute ethanol at 25$^{\circ}$C. The reactivity of $EtO^-M^+$ toward 4 is in the order $EtO^-K^+$ > $EtO^-Na^+$> $EtO^-Li^+$ > $EtO^-K^+$+ 18-crown-6 ether. This is further confirmed by an ion pairing treatment method. The present result indicates that (1) ion paired $EtO^-M^+$ is more reactive than dissociated $EtO^-$ ; (2) the alkali metal ions ($K^+,\;Na^+,\;Li^+$) behave as a catalyst; (3) the catalytic effect increases with increasing the size of the metal ion. A similar result has been obtained for the reaction of 5, however, the catalytic effects shown by the metal ions are more significant in the reaction of 5 than in that of 4.