• Title/Summary/Keyword: Alkali element

Search Result 71, Processing Time 0.027 seconds

Petrography and Geochemistry of the Ultramafic Rocks from the Hongseong and Kwangcheon areas, Chungcheongnam-Do. (충남 홍성 및 광천 지역 초염기성암의 암석 및 지구화학)

  • Song Suckhwan;Choi Seon Gyu;Oh Chang Hwan;Seo Ji Eun;Choi Seongho
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.477-497
    • /
    • 2004
  • In the Hongseong and Kwangcheon areas, two ultramafic rocks are exposed as isolated bodies in the Precambrian Kyeonggi gneiss complex. The ultramafic rocks extend for several hundred meters to NNE direction and are contact with adjacent metasediments by steeply dipping faults. The rocks are dunite or harzburgite showing dominantly equigranular-mosaic and protogranular textures with a minor amount of porphyroclastic textures. They contain varying amounts of fosteritic olivine (F$o_{0.91-0.93}$), magnesian pyroxene (E$n_{0.89-0.93}$) and tremolitic to magnesian hornblende with minor amounts of spinel, serpentine, chlorite, magnetite, phlogopite and talc. The rocks are in contrast with adjacent gneiss complex or metabasite (amphibole, biotite, plagioclase, alkali-feldspar and quartz). Geochemically, these ultramafic rocks are characterized by high magnesium number (M$g_#$> 0.88) and transitional element (mainly, Ni>1716 ppm, Cr>1789 ppm), low alkali element (e.g. $K_2$O<0.09 wt.%, Na$_2$O<0.19 wt.%) and depletion of incompatible elements. The calculated correlation coefficients showed good positive correlations among the ferrous (e.g. Sc, V, Zn) elements, incompatible elements (e.g. REE), and among SiO$_2$ or $Al_2$O$_3$ with ferrous elements, whereas negative correlations are appeared between Ni and major elements. These results involve increasing of the ferrous- and $Al_2$O$_3$-bearing minerals(e.g. amphibole and mica) with decreasing of Mg-bearing minerals (e.g. olivine) depending on the degree of alteration. Calculated geothermometries and mineral assemblages suggest that the ultramafic rocks have been metamorphosed through the condition from the greenschist to amphibolite facies. Compared with ultramafic rocks elsewhere, it is thought that those of the Hongseong and Kwangcheon areas are derivatives of the depleted sources since they are depleted in incompatible elements including REE abundances. Moreover overall characteristics of the ultramafic rocks are similar to the those of orogenic related Alpine type ultramafic rocks, especially, shallow mantle slab varieties.

Petrology of the Chaeyaksan basaltic rocks and application of hornblende geobarometer (채약산 현무암질암류의 암석학적인 특징 및 각섬석 지질압력계의 적용)

  • 김상욱;황상구;양판석;이윤종;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.92-105
    • /
    • 1999
  • The Cretaceous Chaeyaksan basaltic rocks consist mainly of basaltic tuffs intercalating three layers of basalt. Stratigraphically, the rocks are located between the upper Songnaedong Formation and the lower Geoncheonri Formation and contain plagioclase, augite, hornblende, and a few olivine phenocrysts. Geochemically, they show calc-alkaline characteristics in some immobile element content, but show the alkaline suite feature in the mobile major element composition. The basalts are widely spilitized but some of them is altered to shoshonitic rocks with more calcic plagioclase, calcite, and chlorite, and adularia veinlets are common in the rocks. It is supposed that the post-eruption alteration of the rocks is done through alkali-replacement by hydrothermal solution or vapor rather than by low grade regional metamorphism. It is considered that A1 in hornblende will be available for estimating the pressure of the pre-eruption magma in the reservoir although the plagioclase of the rocks are highly albitized. The crystallization pressure was calculated as 5.7Kb by the equation of Johnson and Rutherford(l989) incorporating of the effect of overestimate of .41T in hornblende in the case of quartz-free rocks. Application of the estimated temperature, pressure and the constituent of phenocrysts of the rocks to the experimental P-T phase diagram for basalts established by Green(1982) indicates the crystallization course and succession of growth of the phenocrysts during of rising and cooling of the magma reservoir; augite + augite and olivine + augite, olivine, and hornblende -+ augite and hornblende+ augite, hornblende, and plagioclase. Such evolution course of the magma may include crystal fractionation by the phenocrysts crystallization and contamination by country rock in lower crust.

  • PDF

Petrochemistry of the Peridotites within an Andong Ultramafic Complex and Characteristics of Asbestos Occurrences (안동 초염기성암 복합체 내 페리도타이트의 암석지화학과 석면 산출 특성)

  • Song, Suckhwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.15-39
    • /
    • 2019
  • An ultramafic complex occurs as an isolated lenticular body in the Andong area. The Andong ultramafic complex comprises ultramafic and mafic rocks, but mainly peridotites. The complex extends for several kilometer to ENE direction, adjacent to the Andong fault line. This study is for petrochemistry of the peridotites within the ultramafic complex and characteristics of asbestos occurrences. The peridotites are igneous origin, ranging from lherzolite to wehrlites and are characterized by high Fo olivine ($Fo_{0.85-0.87}$), Mg clinopyroxene ($Mg_{87.5-93.5}$), and tremolitic to tschermakitic hornblende. Geochemically, these rocks show high magnesium number (mainly Mg = 85.3-87.38) and transitional element and low alkali element contents. The peridotites host asbestos, including chrysotile, tremolite and actinolite asbestos, but dominated by amphibole asbestos. The amphibole asbestos are found along small fault face, and cleavage and fracture showing several cm to ten cm in width as slip and oblique fibers, while the chryostiles occur at cleavage and vein showing several mm-cm in width as cross and slip fibers. They are confirmed by PLM, XRD and SEM results. Overall characteristics of peridotites from the Andong ultramafic complex and occurrences of the asbestos are similar to those of worldwide orogenic related Alpine type ultramafic rocks and serpentinized ultramafic bodies in Chungnam, Korea, respectively.

The Geochemical and Zircon Trace Element Characteristics of A-type Granitoids in Boziguoer, Baicheng County, Xinjiang (중국 신장 위그루자치구 바이청현 보즈구얼의 A형화강암류의 지화학 및 지르콘 미량원소특징에 대한 연구)

  • Yin, Jingwu;Liu, Chunhua;Park, Jung Hyun;Shao, Xingkun;Yang, Haitao;Xu, Haiming;Wang, Jun
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.179-198
    • /
    • 2013
  • The Boziguoer A-type granitoids in Baicheng County, Xinjiang, belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks. The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite, an aegirine or arfvedsonite alkali feldspar granite, and a biotite alkali feldspar syenite. The major rock-forming minerals are albite, K-feldspar, quartz, arfvedsonite, aegirine, and siderophyllite. The accessory minerals are mainly zircon, pyrochlore, thorite, fluorite, monazite, bastnaesite, xenotime, and astrophyllite. The chemical composition of the alkaline granitoids show that $SiO_2$ varies from 64.55% to 72.29% with a mean value of 67.32%, $Na_2O+K_2O$ is high (9.85~11.87%) with a mean of 11.14%, $K_2O$ is 2.39%~5.47% (mean = 4.73%), the $K_2O/Na_2O$ ratios are 0.31~0.96, $Al_2O_3$ ranges from 12.58% to 15.44%, and total $FeO^T$ is between 2.35% and 5.65%. CaO, MgO, MnO, and $TiO_2$ are low. The REE content is high and the total ${\sum}REE$ is $(263{\sim}1219){\times}10^{-6}$ (mean = $776{\times}10^{-6}$), showing LREE enrichment HREE depletion with strong negative Eu anomalies. In addition, the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type. The Zr content is $(113{\sim}1246){\times}10^{-6}$ (mean = $594{\times}10^{-6}$), Zr+Nb+Ce+Y is between $(478{\sim}2203){\times}10^{-6}$ with a mean of $1362{\times}10^{-6}$. Furthermore, the alkaline granitoids have high HFSE (Ga, Nb, Ta, Zr, and Hf) content and low LILE (Ba, K, and Sr) content. The Nb/Ta ratio varies from 7.23 to 32.59 (mean = 16.59) and the Zr/Hf ratio is 16.69~58.04 (mean = 36.80). The zircons are depleted in LREE and enriched in HREE. The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly. The Boziguoer A-type granitoids share similar features with A1-type granites. The average temperature of the granitic magma was estimated at $832{\sim}839^{\circ}C$. The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature, anhydrous, and low oxygen fugacity conditions.

Geochemical and Nd-Sr Isotope Studies for Foliated Granitoids and Mylonitized Gneisses from the Myeongho Area in Northeast Yecheon Shear Zone (예천전단대 북동부 명호지역 엽리상 화강암류와 압쇄 편마암류에 대한 지구화학 및 Nd-Sr 동위원소 연구)

  • Kim, Sung-Won;Lee, Chang-Yun;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.299-314
    • /
    • 2008
  • The NE-trending Honam shear zone is a broad, dextral strike-slip fault zone between the southern margin of the Okcheon Belt and the Precambrian Yeongnam Massif in South Korea and is parallel to the trend of Sinian deformation that is conspicuous in Far East Asia. In this paper, we report geochemical and isotopic(Sr and Nd) data of mylonitic quartz-muscovite Precambrian gneisses and surrounding foliated hornblende-biotite granitoids near the Myeongho area in the Yecheon Shear Zone, a representative segment of the Honam Shear Zone. Foliated hornblende-biotite granitoids commonly plot in the granodiorite field($SiO_2=61.9-67.1\;wt%$ and $Na_2O+K_2O=5.21-6.99\;wt%$) on $SiO_2$ vs. $Na_2O+K_2O$ discrimination diagram, whereas quartz-muscovite Precambrian orthogneisses plot in the granite field. The foliated hornblende-biotite granitoids are mostly calcic and calc-alkalic and are dominantly magnesian in a modified alkali-lime index(MALI) and Fe# [$=FeO_{total}(FeO_{total}+MgO)$] versus $SiO_2$ diagrams, which correspond with geochemical characteristics of Cordilleran Mesozoic batholiths. The foliated hornblende-biotite granitoids have molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 0.89 to 1.10 and are metaluminous to weakly peraluminous, indicating I type. In contrast, Paleoproterozoic orthogneisses have peraluminous compositions, with molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 1.11 to 1.22. On trace element spider diagrams normalized to the primitive mantle, the large ion lithophile element(LILE) enrichments(Rb, Ba, Th and U) and negative Ta-Nb-P-Ti anomalies of foliated hornblende-biotite granitoids and mylonitized quartz-muscovite gneisses in the Yecheon Shear Zone are features common to subduction-related granitoids and are also found in granitoids from a crustal source derived from the arc crust of active continental margin. ${\varepsilon}_{Nd}(T)$ and initial Sr-ratio ratios of foliated hornblende-biotite granitoids with suggest the involvement of upper crust-derived melts in granitoid petrogenesis. Foliated hornblende-biotite granitoids in the study area, together with the Yeongju Batholith, show not changing contents of specific elements(Ti, P, Zr, V and Y) from shear zone to the area near the shear zone. These results suggest that no volume changes and geochemical alterations in fluid-rich foliated hornblende-biotite granitoids may occur during deformation, which mass transfer by fluid flow into the shear zone is equal to the mass transfer out of the shear zone.

Oxalate Precipitation of Lanthanide and Actinide in a Simulated Radioactive Liquid Waste (모의 방사성용액에서 란탄족과 악티늄족원소의 옥살산침전)

  • Chung, Dong-Yong;Kim, Eung-Ho;Lee, Eil-Hee;Yoo, Jae-Hyung;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.996-1002
    • /
    • 1999
  • The oxalate precipitation of lanthanide and actinide by oxalic acid was investigated in the simulated radioactive liquid waste, which was composed of 17 elements of alkali, alkaline earth(Cs, Rb, Ba, Sr), transition metal(Zr, Fe, Mo, Ni, Pd, Rh), lanthanide(La, Y, Nd, Ce, Eu) and actinide(Np, Am) in nitric acid solution. The effect of concentrations of nitric acid and ascorbic acid on the precipitation yield of each element in the simulated solution was examined at 0.5 M oxalic acid concentration. The precipitation yields of the elements were usually decreased with nitric acid concentration, nevertheless, the precipitation yields of lanthanide and actinide were more than 99%. Palladium was precipitated due to the reduction of Pd(II) into Pd metal by the addition of ascorbic acid in the oxalate precipitation and then, the precipitation yields of Mo, Fe, Ni, Ba decreased by 10~20% with concentration of ascorbic acid. The reductive precipitation of Pd(II) into Pd metal by the addition of ascorbic acid into the simulated radwaste occurred at below 1 M nitric acid concentration and its yield showed maximum at the ascorbic acid concentration of 0.01~0.02 M. The hydrazine suppressed the reductive precipitation of Pd by the ascorbic acid.

  • PDF

A Study on the Metamorphism of Gneisses in the Northern Gohung Area, Chonnam (전라남도 고흥 북부지역에 분포하는 편마암류의 변성작용에 관한 연구)

  • Shin, Sang-Eun;Cho, Kye-Bok;Park, Bae-Young
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.443-473
    • /
    • 2004
  • In northern Gohung granitic gneiss, porphyroblastic gneiss and migmatitic gneiss are widely distributed. Gneisses were plotted in granodiorite domain on an lUGS silica-alkali diagram. The amounts of trace elements (Li, Zn, Sc, Sr, Ni, V Y etc.) vs. $SiO_2$, somewhat decreased. Plagioclase showed a wide compositional range ($An_{32-48}$). $X_{alm}$ and $X_{sps}$ were higher in garnet rim and $X_{pyp}$ in garnet core. The rocks in the study area were formed from S and I-type magmas which generated from syn-collision and the late to post-orogenic tectonic environment. Metamorphic P-T conditions u·ere low to medium pressure, high temperature (803-913$^{\circ}C$, 6.1-7.3 kb) and overprinted by retrograde metamorphism (570-726$^{\circ}C$, 2.2-5.1 kb) and chloritization.

Petrology and Geochemistry of the Cretaceous Palgongsan Granite, Southern Korea (백악기(白堊紀) 팔공산(八公山) 화강암(花崗岩)의 암석학적(岩石學的) 및 지구화학적(地球化學的) 연구(硏究))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.16 no.2
    • /
    • pp.83-109
    • /
    • 1983
  • The Cretaceous Palgongsan granite is a typical, calc-alkaline, subsolvus monzogranite and shows characteristics of "I-type" granite by mineralogy and chemical composition. Many of the major and trace element characteristics of the Palgongsan granite are consistent with a relationship by fractional crystallisation to form a chemically zoned pattern. The granite show light REE enrichment with (Ce/Yb)N ratios of 5.78-9.50. All the REE patterns show Eu negative anomalies which become larger from the margin ($Eu/Eu^*=0.75$) to the core ($Eu/Eu^*=0.24$) of the pluton, mainly due to feldspar fractionation. Mineral geochemistry (alkali-feldspar, plagioclase & biotite) studies also show the zonal structure of the Palgongsan granite. The two-feldspar geothermometer shows that the temperature difference between the margin and the core part of the pluton is about $200^{\circ}C$ at various assumed pressures.

  • PDF

Genetic Implications of Ultramafic Rocks from the Bibong Area in the Kyeonggi Gneiss Complex (경기편마암복합체내 비봉지역에 분포하는 초염기성암에 대한 성인적 적용)

  • Song, Suck Hwan;Choi, Seon Gyu;Woo, Jun Gie
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.477-491
    • /
    • 1997
  • In the Bibong area of the western part of Chungcheongnam-do, ultramafic masses occur as discontinuous isolated lenticular bodies in the Precambrian Kyeonggi gneiss complex. They extend for about 200 m long to NNE directions which are parallel to fault lines in the gneiss complex. The ultramafic masses contact with the adjacent gneiss complex as steeply dipping faults. They are dunites and harzburgites and many of them are partially or completely serpentinized. The ultramafic rocks dominantly show protogranular, equigranular and equigranular-$m{\grave{o}}saic$ textures. They also show porphyroclastic (megacrystic) or recrystallized textures reflecting several stages of metamorphism. They contain varying amounts of olivine $(Fo_{89-92})$, enstatitic to bronzitic orthopyroxene, diopsidic clinopyroxene, tremolitic to pargasitic hornblende, and spinel with serpentine, talc, chlorite, calcite and magnetite. The ultramafic rocks have high magnesium numbers and transitional element contents, low alkali contents and show deplete REE patterns. Comparing with available data, geochemical and mineralogical characteristics shown in the ultramafic rocks of the Bibong area are similar to those of worldwide mantle xenoliths and orogenic related ultramafic rocks. The field evidences, petrographical, geochemical and mineralogical characteristics shown in the ultramafic rocks of the Bibong area are similar to alpine type ultramafic rocks emplaced into the crust by the faulting as mantle slab types. With the petrographical characteristics, these mineralogical compositions suggest that the ultramafic rocks of the Bibong area have experienced several stages of retrogressive metamorphism in a condition ranging from the upper amphibolite facies to greenschist facies.

  • PDF

Petrology of the Cretaceous Volcanic Rocks in Eastern Part of the Kyeongsan Caldera (경산칼데라 동부지역에 분포하는 백악기 화산암류의 암석학적 특징)

  • Park Sung-Ok;Jang Yun-Deuk;Hwang Sang-Koo;Kim Jeong-Jin
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.2 s.44
    • /
    • pp.90-105
    • /
    • 2006
  • The Cretaceous volcanic rocks in the study area represented by andesitic rocks occupy eastern part of the Kyeongsan Caldera. The volcanic rocks comprise andesite I, andesitic tuff, andesite II, and andesitic tuff breccia in their stratigraphic succession, and andesitic porphyry. Andesite I is distinguished from andesite II in their color, texture, phenocryst mineralogy and petrochemisty. In outcrops, andesite I is compact and dark-green, and andesite II is brick red in color and porphyritic in texture. In their phenocryst mineralogy, andesite I contains olivine phenocryst in addition to plagioclase and pyroxene which occur in both of andesites. Compared to andesite II, andesite I is higher in $SiO_2$ and $K_2O$ contents and lower in CaO, MgO, MnO, $TiO_2,\;Fe_2O_3$, and $P_2O_5$. Major elements petrochemistry shows that magma series of the volcanic rocks spread widely from calc-alkaline to alkaline series. On the other hand, immobile trace elements petrochemistry shows that the magma series is calc-alkaline without exception, suggesting that the volcanics has experienced more or less alkali enrichment after their eruption. Trace element diagrams for discrimination of tectonic setting show that the volcanics of the study area might be originated from calc-alkaline continental volcanic arc.