• Title/Summary/Keyword: Alkali agent

Search Result 125, Processing Time 0.023 seconds

Experimental study on chemical activation of recycled powder as a cementitious material in mine paste backfilling

  • Liu, Yin;Lu, Chang;Zhang, Haoqiang;Li, Jinping
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.341-349
    • /
    • 2016
  • To improve the utilization rate of construction waste as mine backfilling materials, this paper investigated the feasibility of using recycled powder as mine paste backfilling cementitious material, and studied the pozzolanic activity of recycled construction waste powder. In this study, alkali-calcium-sulfur served as the activation principle and an orthogonal test plan was performed to analyze the impact of the early strength agent, quick lime, and gypsum on the pozzolanic activity of the recycled powder. Our results indicated that in descending order, early strength agent > quick lime > gypsum affected the strength of the backfilling paste with recycled powder as a cementitious material during early phases. The strength during late phases was affected by, in descending order, quick lime > gypsum > early strength agent. Using setting time and early compressive strength as an analysis index as well as an extreme difference analysis, it was found that the optimal ratio of recycled powder cementitious material for mine paste backfilling was recycled powder:quick lime:gypsum:early strength agent at 78%:10%:8%:4%. X-ray diffraction analysis and scanning electron microscope were used to show that the hydration products of recycled powder cementitious material at the initial stages were mainly CH and ettringite. As hydration time increased, more and more recycled powder was activated. It mainly became calcium silicate hydrate, calcium aluminate hydrate, etc. In summary, recycled powder exhibited potential pozzolanic activities. When activated, it could replace cementitious materials to be used in mine backfill.

A Customized Cleaning Agent for the Maintenance of Electric Fume Collector Used for the Purification of Effluent Gas from the Textile Industry (섬유산업 배기가스 정화용 Electric Fume Collector 설비의 유지보수를 위한 맞춤형 세정제)

  • Kim, Hotae;Yoo, Hwang-Yooll;Jeon, Koung Min;Song, Doori;Kim, Jin-Bae
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.229-236
    • /
    • 2018
  • A customized cleaning agent was investigated for improving the performance decreased by the pollution of collecting plates in an electric fume collector (EFC) which was developed and applied for the purification of effluent gas including oil mist from the textile industry. The pollutants on the surface of collecting plates were blackened by the condensation of oil mist for a long time and difficult to remove by general cleaning agents. The composition of an optimized cleaning agent consisted of alkali, alcohol, glycol and non-ionic surfactant sources was determined by considering the pollutant properties and effect on the damage of the basic metal of collecting plate and so on. The developed cleaning agent solution diluted by 9.1% was applied to the field test, and also the pollutants strongly adhered on collecting plate surfaces were successfully removed by a simple spraying method. The effluent gas purification efficiency of EFC increased significantly by cleaning of collecting plates.

Preparation of Fine Silk Powder and It′s Application for Surface Modification (폐견사류의 미세분말화 및 표면 가공제 적용)

  • 이용우;이광길;여주홍;김종호
    • Journal of Sericultural and Entomological Science
    • /
    • v.43 no.1
    • /
    • pp.41-48
    • /
    • 2001
  • The purification, dissolution and powdering of stained waste silk obtained from weaving and dyeing process were studied for the surface modification of textile fabric and plastic materials. The whiteness of stained waste silk could be improved through degumming and bleaching with sodium hydrosulfite. The water-soluble fibroin solution can be obtained by dissoving the degummed waste silk in a boiling solution of 50% calcium chloride for 60 minutes. The salts and heavy metals contained in fibroin solution were removed by electric dialysis, wool fiber filtration and gel filtration chromatography. The fibroin powder was prepared by using a fine grinder after the alkali treatment for weakening the silk fiber. The fine fibroin powder of particle size around 30 ㎛ was obtained with a ultra fine-mill, while it was finer below 10 ㎛ with a ball-mill. The dissolved or powdered silk was applied to the surface of fabric with addition of the binder (a urethane resin). The moisture content of polyester and nylon fabrics treated with the silk solution was improved due to hygroscopic property of silk. The fine fibroin powder mixed with the binder ws coated on the surface of synthetic film by use of the air pressed sprayer. It was revealed that the hygroscopicity as well as the softness of fibroin powder coated film was much improved. Therefore, it is thought that the fine silk fibroin powder is applicable as an coating agent for the surface modification of plastic and synthetic leather.

  • PDF

Possible Roles of Antarctic Krill Proteases for Skin Regeneration

  • Lee, Sung-Gu;Koh, Hye-Yeon;Lee, Hong-Kum;Yim, Joung-Han
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.467-472
    • /
    • 2008
  • Antarctic krill has a strong proteolytic enzyme system, which comes from a combination of several proteases. This powerful activity can be easily detected by krill's superior post mortem autolysis. Mammalian skin consists of epidermis and dermal connective tissue, and functions as a barrier against threatening environments. A clot in a wound site of the skin should be removed for successful skin regeneration. Epithelial cells secrete proteases to dissolve the clot. In previous studies Antarctic krill proteases were purified and characterized. The proteolytic enzymes from Antarctic krill showed higher activity than mammalian enzymes. It has been suggested that these krill clean up the necrotic skin wound to induce a natural healing ability. The enzymes exhibited additional possibilities for several other biomedical applications, including dental plaque controlling agent and healing agent for corneal alkali burn. Considering that these versatile activities come from a mixture of several enzymes, discovering other proteolytic enzymes could be another feasible way to enhance the activity if they can be used together with krill enzymes. Molecular cloning of the krill proteases should be carried out to study and develop the applications. This review introduces possible roles of the unique Antarctic krill proteases, with basic information and suggestion for the development of an application to skin regeneration.

A Development of High Power Activated Carbon Using the KOH Activation of Soft Carbon Series Cokes

  • Kim, Jung-Ae;Park, In-Soo;Seo, Ji-Hye;Lee, Jung-Joon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • The process parameter in optimized KOH alkali activation of soft carbon series coke material in high purity was set with DOE experiments design. The activated carbon was produced by performing the activation process based on the set process parameters. The specific surface area was measured and pore size was analyzed by $N_2$ absorption method for the produced activated carbon. The surface functional group was analyzed by Boehm method and metal impurities were analyzed by XRF method. The specific surface area was increased over 2,000 $m^2/g$ as the mixing ratio of activation agent increased. The micro pores in $5{\sim}15{\AA}$ and surface functional group under 0.4 meq/g were obtained. The contents of the metal impurity in activated carbon which is the factor for reducing the electrochemical characteristics was reduced less than 100 ppm through the cleansing process optimization. The electrochemical characteristics of activated carbon in 38.5 F/g and 26.6 F/cc were checked through the impedance measuring with cyclic voltammetry scan rate in 50~300 mV/s and frequency in 10 mHz ~100 kHz. The activated carbon was made in the optimized activation process conditions of activation time in 40 minutes, mixing ratio of activation agent in 4.5 : 1.0 and heat treatment temperature over $650^{\circ}C$.

Preparation of Solvent-Free Low Foaming Scouring Agents and Their Scouring Characteristics (무용제형 저기포성 정련제의 제조 및 정련특성)

  • Park, Hong-Soo;Ahn, Sung-Hwan;Shim, Il-Woo;Jo, Hye-Jin;Hahm, Hyun-Sik;Kim, Yeoung-Chan;Kim, Seong-Kil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • Solvent-free low foaming scouring agents (LFSC) were prepared by blending of 2-ethylhexylaminoethyl sulfate (2-EHAS), POE(10) octadecylbenzyl- ammonium chloride (POBAC) and Sedlan FF-200 (FF-200). As the results of several tests, 2-EHAS/POBAC/FF-200/water (8g/12g/20g/60g) mixture (LFSC-5) showed good cleaning power, penetrating ability and stability to alkali, and gave less problem in water pollution. The foaming power of LFSC-5 measured by Ross and Miles method was 8mm foam height immediately after foaming, and that measured by Ross and Clark method was less than 300mm foam height at $30^{\circ}C$, and 18mm at $80^{\circ}C$. As a result, LFSC-5 proved a good low foaming scouring agent for fiber.

Anti-Cariogenicity of NCS (Non-Cariogenicity Sugar) Produced by Alkalophilic Bacillus sp. S-1013

  • Ryu, Il-Hwan;Kim, Sun-Sook;Lee, Kap-Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.759-765
    • /
    • 2004
  • The NCS inhibited the activity of glucosyltransferase which was produced by Streptococcus mutans JC-2, and the rate of inhibition at $100\muM<$ and $200\muM$ were 74.0% and 99.8%, respectively. It was stable in alkali condition, but unstable in acid condition. It was also stable up to $80^{\circ}C$. The kinetic study of the inhibition by NCS was carried out by Lineweaver-Burk plot and Dixon plot. It was non-competitive inhibition, determined by the two plots and $K_i$ and $K_i$ values were $15\muM$ and $19.3\muM$ respectively. The NCS did not show cytotoxicity against human gingival cells at $K_i$ ($15\muM$, $150\muM$, $1,500\mu$ M) concentrations. It had less cytotoxicity than chlohexidin, which has usually been used as the agent of anticaries. To evaluate the industrial applicability of the NCS, human pluck tooth was used. The inhibitory rates of tooth calcification and calcium ion elution by the NCS were 41 % and 2.5 times, respectively. These results suggested that NCS from Bacillus sp. S-1013 is an efficient anticaries agent.

Study on Solvent Extraction Using Salen(NEt2)2 as a Chelating Agent for Determination of Trace Cu(II), Mn(II), and Zn(II) in Water Samples

  • In, Gyo;Kim, Young-Sang;Choi, Jong-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.969-973
    • /
    • 2008
  • Solvent extraction using a Schiff-base, salen$(NEt_2)_2$, as a chelating agent has been conducted on several water samples to study the determination of trace Cu(II), Mn(II) and Zn(II). Experimental conditions for the formation and extraction of metal complexes were optimized with an aqueous solution similar in composition to the samples. The matrix difference between the sample and standard solutions was approximately matched, and the pH of each sample solution was adjusted to 9.5 with $NaHCO_3/NaOH$ buffer. The concentration of salen$(NEt_2)_2$ was $7.3\;{\times}\;10^{-3}$ mol/L, and the complexes were extracted into MIBK solvent followed by the measurement of AAS absorbance. The potential interference of concomitant ions was investigated, but no interference from alkaline and alkali earth ions was shown in this procedure. The given procedure is precise, as judged from the relative standard deviation of less than 5% for five measured data. The recovery of 93-103% shows that this method is quantitative for such trace metal analysis.

Basic Research of Self Compacting Concrete Using Alkali-Activated Slag Binder (알칼리 활성 슬래그 결합재를 이용한 자기충전 콘크리트의 기초 연구)

  • Song, Keum-Il;Shin, Gyeong-Sik;Gong, Min-Ho;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.657-665
    • /
    • 2013
  • The purpose of this study is the basic research of self-compacting concrete using Alkali-Activated Slag (AAS) binder in order to emphasize the durability of structures and facilitate casting the fresh concrete in field. The AAS binder emitted low carbon dioxide ($CO_2$) is eco friendly material of new concept because AAS products not only emit little $CO_2$ during production but also reuse the industrial by-products such as ground granulated blast-furnace slag (GGBS) of the steel mill. Until now, almost of domestic and foreign research are using Ordinary Portland Cement (OPC) for self-compacting concrete, and also, nonexistent research about AAS. The self-compacting concrete must get the performance of flowability, segregation resistance, filling and passing ability. Nine concrete mixes were prepared with the main parameter of unit amount of binder (400, 500, 600 $kg/m^3$) and 3 types of water-binder (W/B) ratio. The results of test were that fresh concretes were satisfied with flowability, segregation resistance, and filling ability of JSCE. But the passing ability was not meet the criteria of EFNARC because of higher viscosity of AAS paste than OPC. This high viscosity of AAS paste enables the manufacturing of self compacting concrete, segregation of which does not occur without the using of viscosity agent. It is necessary that the development of high fluidity AAS binders of higher strength and the study of better passing ability of AAS concrete mixes in order to use self compacting AAS concrete in field.

A Clinical Study on Recent Causing Agents of Chemical Burns (화학 화상의 최근 원인 물질에 관한 임상적 연구)

  • Shin, Chi Ho;Yu, Sung Hoon;Kim, Ji Hoon;Kim, Dong Chul
    • Journal of the Korean Burn Society
    • /
    • v.23 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Purpose: Due to rapid changes in the industrial structure in last decade, the wider various types of chemical agents were introduced. Burn surgeons should be well-informed with rapid changes of chemical burns. We present the recent incidence trends of causing agents of chemical burns. Methods: From 2010 to 2019, 92 chemical burn victims were included in this study. A retrospective study was made about the type, distribution and incidence of the causing agents of chemical burns. Initial treatments of most chemical burn wounds are copious saline irrigation by tap water, except hydrofluoric acid burn cases managed by 10% calcium gluconate injection. In alkali chemical burns on extremity, if thin eschars appear in postburn 2~3 days, acute early surgical escharectomy and split thickness skin graft were done. Results: More than 9 types of major chemicals causing chemical burns were surveyed, and the most common causing agent of chemical burns was Hydrofluoric acid (23.9%) followed by Acetic acid (19.6%) and Sodium hydroxide (8.7%). Conclusion: From 2010 to 2019, changes in the causing agent of chemical burns are that the types of major causing agents of chemical burns have increased and the distribution and incidence of causing agents have changed compared to previous reports. According to this study, more than 9 types of major chemicals causing chemical burns were surveyed, and the most common causing agent of chemical burns was Hydrofluoric acid (23.9%) followed by Acetic acid, Sodium hydroxide.