• Title/Summary/Keyword: Alkali Oxide

Search Result 135, Processing Time 0.019 seconds

Surface Properties of Color Concrete Using Acid Stained Agent (표면 착색용 산화제를 사용한 컬러 콘크리트의 표면 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Park, Hyo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.265-272
    • /
    • 2011
  • Even though concrete is the most important material for building structures, its intrinsic gray color degrades urban esthetics. In order to improve this problem, coloring methods of mixing pigment in concrete batch and painting the surface of concrete surface have been tried. However, applications of the coloring methods in construction field are difficult due to high cost and low durability. Recently, acid stain agent is emerging as a new coloring method for concrete. It is able to apply a remarkably thin colored layer on a concrete surface from chemical reaction between acid and alkaline solutions. This study has examined the changes and variations of the surface layer of mortar specimen from chemical reaction of acid stained agents. The colors were changed into natural irregular stains according to aging. After the staining, no shape change was found from visible inspections. Microstructure of the colored surface applied with acid stained agent was much rougher than that of original mortar. When the colored layer was compared to original surface, crystals of hydrate such as $Ca(OH)_2$ and C-S-H gel were observed. Surface hardness was same or slightly higher in the colored layer. The value of pH was reduced by approximately 10%, weight contents of elements such as Ca, Si, and Al were low. In the chemical composition of the colored layer, the non-cement based elements of Mn, Cr, and Cu increased. Also, Fe and alkali elements of K and Na increased.

The Improvement of Denitrofication by Using Sodium Salts in the SNCR Process (SNCR 공정에서 Sodium Salts 첨가제를 이용한 탈질반응 개선에 관한 연구)

  • Lee, Seung Moon;Park, Kwinam;Kwak, Tae-Heon;Park, Jin-Won;Makin, Sanjeev;Kim, Byung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.324-329
    • /
    • 2005
  • The efficiency of reducing nitric oxide using urea combined with alkali salt additives is reported in this study. The inlet concentration of NO is 500 ppm with air flow rates of 3 and 5 L/min. Reduction of NO was studied from 650 to $1,050^{\circ}C$ with urea concentrations of 0.3 to 1 mol/L. The efficiency for the reduction of NO increased by 44% when urea is added alone. A further increase in efficiency was observed in the presence of NaOH as additive in fact, the efficiency was increased by more than 25% and 75% when 0.5 mol/L and 1 mol/L NaOH were added with the urea. The efficiency for the reduction of NO increased with all additives, but descended in the order NaOH, $Na_2CO_3$, $NaNO_3$, HCOONa, and CHCOONa. The maximum efficiency of NaOH and $Na_2NO_3$ are 74% and 73%, respectively. All these additives did not alter the comparatively wide operating temperature window for reducing NO. However, sodium compounds do not shift the maximum NO concentration towards lower temperatures when the NO removal activity enhances.

A Study on the Recovery of a Metalic Fe-particle from the Steelmaking E.A.F. Slag by the Magnetic Separation (전기로 제강 슬래그에서 자력선별에 의한 지금의 회수)

  • 현종영;김형석;신강호;조동성
    • Resources Recycling
    • /
    • v.6 no.3
    • /
    • pp.3-8
    • /
    • 1997
  • The EA.F. sleelmaking slag (slag that follow) of a cnmvany 1 Co.. containzd a simple substance of a metal, wustlte (FeO), magnetite (Fe,O,), gehlenite (CaAl,SiO,), monlicellite (CaMgSiO,), dc. To recovere a metal (Fe grade . t95%) in the slag, it is desirable that the particles of a metal are isolated from thc slag and madc for a liberated subslance. Then, the liberaled melal is easlly recoveled by a magnetic separation. If thc rcclarnalcd slag, the sizc of which ranges under 40 nun, have a mulli-stage crushing, the most of a metal in thc slag is simply isolaled as a liberated subslance. If the mad, lhat is a liberated subslance and a sphere, is recovered by a magnetic field intensity. the minimum intensity, at which a metal is attracted, is approximately IOOG and did no1 dcpcnd on the particle size of a metad in the same particles. TIe recovered material. that contdined a iron (Fe) over 95% is a metal which is crushed slag by l00G in the multi-stage. If the magnetic field intcns~ty increase, the recovery mcrcasc, but the concentration grade decrease Bewusc thc concentration eams more and more impurities, iron oxide and the coml~ound of alkali earth element. 'll~ercforc If the rccla~nated slag have the multi-stage crushing, the metal is almostly recovered in the crushed slag by lO0G on each particles. If the slag, used as a rcclamatian lhat is a amount of 350,000 tan from I Co., was undcr the multistage crushing and then separaled by 100gauss, it is possible to recova a metal approximately 2.500 Ion, lhat is 0.73% of n ~eclamated slag. in 304.7 mm particles and to recover 4.200 tan in 0.3-1.7 mm particles , that is 1.2% nf a rcclamated slag, in a year. Therefore, ihe told recoverable meld is 6,700 ton, that is 19% of a reclmated slag, in a year, too.

  • PDF

Characterization of Materials and Color Formation for Black Potteries from the Proto-Three Kingdoms Period in Ulsan, Korea (울산지역 원삼국시대 흑색토기의 재질 및 발색 특성)

  • Kim, Su Kyoung;Jang, Sungyoon;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.37 no.2
    • /
    • pp.77-89
    • /
    • 2021
  • In this study, materials and color formation techniques were assessed for black potteries excavated from the Janghyeon-dong, Jungsan-dong and Gyodong-ri sites during the Proto-Three Kingdoms period in Ulsan, Korea. Although the black potteries were black superficially, the inner cores were either black or reddish yellow. Microscopy analysis identified that body clay was used for reddish iron oxide rich soils with quartz, alkali feldspar and mica, along with grains of myrmechite texture. Additionally, as marginal differences exist in the contents of SiO2, Fe2O3 and CaO, the composition of the host rock and clay distributed around the sites was affected. Thus, we can deduce that pottery was made by soiling at a short distance. Raman spectroscopy results revealed that the black layer of the black pottery was used as amorphous combustion carbon. In addition, as a transparent layer of brown lacquer was observed on the substrate that was in contact with the surface layer, the black layer of the pottery induced black color development by a combination of combustion carbon and lacquer. Based on the mineral composition and microtexture of the body clay, the firing temperature of the potteries seemed to range from 750 to 850℃, whereas the lacquer layer was pyrolyzed at 468℃ by thermal analysis. Therefore, a combined layer of combustion carbon and lacquer, which formed the black color, was painted after the body clay was fired.

Environmental effects from Natural Waters Contaminated with Acid Mine Drainage in the Abandoned Backun Mine Area (백운 폐광산의 방치된 폐석으로 인한 주변 수계의 환경적 영향)

  • 전서령;정재일;김대현
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.325-337
    • /
    • 2002
  • We examined the contamination of stream water and stream sediments by heavy metal elements with respect to distance from the abandoned Backun Au-Ag-Cu mine. High contents of heavy metals (Pb, Zn, Cu, Cd, Mn, and Fe) and aluminum in the waters connected with mining and associated deposits (dumps, tailings) reduce water quality. In the mining area, Ca and SO$_4$ are predominant cation and anion. The mining water is Ca-SO$_4$ type and is enriched in heavy metals resulted from the weathering of sulfide minerals. This mine drainage water is weakly acid or neutral (pH; 6.5-7.1) because of neutralizing effect by other alkali and alkaline earth elements. The effluent from the mine adit is also weakly acid or neutral, and contains elevated concentrations of most elements due to reactions with ore and gangue minerals in the deposit. The concentration of ions in the Backun mining water is high in the mine adit drainage water and steeply decreased award to down stream. Buffering process can be reasonably considered as a partial natural control of pollution, since the ion concentration becomes lower and the pH value becomes neutralized. In order to evaluate mobility and bioavailability of metals, sequential extraction was used for stream sediments into five operationally defined groups: exchangeable, bound to carbonates, bound to FeMn oxide, bound to organic matter, and residual. The residual fraction was the most abundant pool for Cu(2l-92%), Zn(28-89%) and Pb(23-94%). Almost sediments are low concentrated with Cd(2.7-52.8 mg/kg) than any other elements. But Cd dominate with non stable fraction (68-97%). Upper stream sediments are contaminated with Pb, and down area sediments are enriched with Zn. It is indicate high mobility of Zn and Cd.