• Title/Summary/Keyword: Alkali

Search Result 2,795, Processing Time 0.026 seconds

Influence of Na/Al Ratio and Curing Temperature of Geopolymers on Efflorescence Reduction (Na/Al 비와 양생온도가 지오폴리머의 백화억제에 미치는 영향)

  • Kim, Byoungkwan;Heo, Ye-Eun;Chon, Chul-Min;Lee, Sujeong
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.59-67
    • /
    • 2018
  • Efflorescence is a white deposit of powders in the surface of cement concrete which can also occur in geopolymers. Efflorescence occurs when sodium ions in alkali activator react with atmospheric carbon dioxide to form sodium carbonate components. In this study, we investigated whether the secondary efflorescence can be reduced by controlling the Na/Al mole ratio or by changing the curing temperature and heat curing time in fly ash-based geopolymers. The 28 days compressive strength in geopolymers having Na/Al ratio of 1.0 was higher than geopolymers having Na/Al ratio of 0.8. The strength increased with the increasing curing temperature and longer heat curing time. On the other hand, efflorescence was lower when the curing temperature was high and the heat curing time was longer in the geopolymers having Na/Al ratio of 1.0. The geopolymers having Na/Al ratio of 0.8 showed accelerated efflorescence occurrence than the geopolymers having Na/Al ratio of 1.0. In order to reduce the occurrence of the secondary efflorescence of fly ash-based geopolymers, it will be advantageous to maintain the Na/Al ratio at 1.0, increase the curing temperature, and lengthen the heating curing time.

Study on Recovery of Precious Metal (Ag, Au) from Anode Slime Produced by Electro-refining Process of Anode Copper (양극동의 전해정련시 발생된 양극슬라임으로부터 귀금속(Ag, Au) 회수에 대한 연구)

  • Kim, Young-Am;Park, Bo-Gun;Park, Jae-Hun;Hwang, Su-Hyun
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.23-29
    • /
    • 2018
  • Recently rapid economic growth and technological development have led to an increase in the generation of waste electrical and electronic equipment (WEEE). As the amount of electric and electronic waste generated increases, the importance of processing waste printed circuit boards (PCB) is also increasing. Various studies have been conducted to recycle various valuable metals contained in a waste PCB in an environmentally friendly and economical manner. To get anode slime containing Ag and Au, Anode copper prepared from PCB scraps was used by means of electro-refining. Ag and Au recovery was conducted by leaching, direct reduction, and ion exchange method. In the case of silver, the anode slime was leached at 3 M $HNO_3$, 100 g/L, $70^{\circ}C$, and Ag was recovered by precipitation, alkali dissolution, and reduction method. In the case of gold, the nitrate leaching residues of the anode slime was leached at 25% aqua regia, 200 g/L, $70^{\circ}C$, and Au was recovered by pH adjustment, ion exchange resin adsorption, desorption and reduction method. The purity of the obtained Au and Ag were confirmed to be 99.99%.

An Experimental Study on the Degradations of Material Properties of Vinylester/FRP Reinforcing Bars under Accelerated Alkaline Condition (급속 알칼리 환경하에서의 비닐에스터/FRP 보강근의 재료성능 저하 특성에 관한 실험적 연구)

  • Oh, Hongseob;Kim, Younghwan;Jang, Naksup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • There is increasingly more research focusing on the application of FRP reinforcing bars as an alternative material for steel reinforcing bars, but most such research look at short term behavior of FRP reinforced structures. In this study, the microscopic analysis and tensile behavior of Basalt and Glass FRP bars under freezing-thawing and alkaline conditions were experimentally evaluated. After 100 cycles of the freezing and thawing, the tensile strength and elastic modulus of FRP bars decreased by about 5%. In the case of microstructure of FRP bars during the initial 20 days, no significant damages of FRP bar sections were found under $20^{\circ}C$ alkaline solution; however, the specimens immersed in $60^{\circ}C$ alkaline solution were found to experience resin dissolution, fiber damage and the separation of the resin-fiber interface. In the alkaline environment, the strength decrease of about 10% occurred in the environment at $20^{\circ}C$ for 100 days, but the tensile strength of FRPs exposed for 500 days decreased by 50%. At temperature of $40^{\circ}C$ and $60^{\circ}C$, an abrupt decrease in the strength was observed at 50 and 100 days. Especially, the tensile strength decrease of Basalt fiber Reinforced Polymer bars showed more severe degradation due to the damage caused by dissolution of resin matrix and fiber swelling in alkaline solution. Therefore, in order to improve the long-term performance of the surface braided FRPr reinforcing bars, surface treatment is required to ensure alkali resistance.

Petrological Classification and Provenance Interpretation of the Sungnyemun Stone Block Foundation, Korea PDF icon (숭례문 육축 구성석재의 암석학적 분류와 원산지 해석)

  • Jo, Young Hoon;Lee, Chan Hee;Yoo, Ji Hyun;Kang, Myeong Kyu;Kim, Duk Mun
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.3
    • /
    • pp.174-193
    • /
    • 2012
  • This study focused on distribution ratio of stone properties based on material characteristic analysis, provenance presumption and transportation route interpretation of the Sungnyemun stone block foundation. The stone block foundation is composed of pinkish granite (56.0%), reddish granite (4.5%) and leucocratic granite (26.2%) of original stones and pinkish granite of new stones(13.3%). The rock-forming minerals for granites are consisted mainly of quartz, alkali-feldspar, plagioclase and biotite, and are similar geochemical evolution trend of major, rare earth, compatible and incompatible elements. Therefore, it is clear that the rocks are genetically same origin. As a result of magnetic susceptibility measurement, the pinkish and reddish granite of original stones and pinkish granite of new stones showed normal distribution around about 4.00(${\times}10^{-3}SI\;unit$). But the leucocratic granite of original stones were confirmed ilmenite series under about 1.00(${\times}10^{-3}SI\;unit$). As a result of provenance interpretation and transportation route analysis based on the petrological results, the provenance of pinkish granite and reddish granite of original stones are presumed the north slope in Namsan mountain and Naksan mountain. Also, the leucocratic granite of original stones and the pinkish granite of new stones are strongly possible furnished from the south and north slope in Namsan mountain and Naksan mountain, respectively.

Petrochemistry of the Peridotites within an Andong Ultramafic Complex and Characteristics of Asbestos Occurrences (안동 초염기성암 복합체 내 페리도타이트의 암석지화학과 석면 산출 특성)

  • Song, Suckhwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.15-39
    • /
    • 2019
  • An ultramafic complex occurs as an isolated lenticular body in the Andong area. The Andong ultramafic complex comprises ultramafic and mafic rocks, but mainly peridotites. The complex extends for several kilometer to ENE direction, adjacent to the Andong fault line. This study is for petrochemistry of the peridotites within the ultramafic complex and characteristics of asbestos occurrences. The peridotites are igneous origin, ranging from lherzolite to wehrlites and are characterized by high Fo olivine ($Fo_{0.85-0.87}$), Mg clinopyroxene ($Mg_{87.5-93.5}$), and tremolitic to tschermakitic hornblende. Geochemically, these rocks show high magnesium number (mainly Mg = 85.3-87.38) and transitional element and low alkali element contents. The peridotites host asbestos, including chrysotile, tremolite and actinolite asbestos, but dominated by amphibole asbestos. The amphibole asbestos are found along small fault face, and cleavage and fracture showing several cm to ten cm in width as slip and oblique fibers, while the chryostiles occur at cleavage and vein showing several mm-cm in width as cross and slip fibers. They are confirmed by PLM, XRD and SEM results. Overall characteristics of peridotites from the Andong ultramafic complex and occurrences of the asbestos are similar to those of worldwide orogenic related Alpine type ultramafic rocks and serpentinized ultramafic bodies in Chungnam, Korea, respectively.

Phenocryst Composition of Mafic Volcanic Rocks in the Wangtian'e Volcano (망천아 화산 고철질 암석의 반정광물 조성 연구)

  • Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2019
  • There are beautiful scenery with columnar jointing at 15 valley of southern slope of the Wangtian'e volcano in Mt. Baekdu volcanic field. The compositions of phenocryst minerals which have porphyritic textures in mafic volcanic rocks of this area were carried out. The Wangtian'e volcano consists of Changbai basalt~trachybasalt (lower part) and Wangtian'e basaltic trachyandesite~trachyte~alkali rhyolite (upper part). This study is focused on the mafic rocks of the Changbai trachybsalt and the Wangtian'e basaltic trachyandesite. Main phenocrysts are feldspar, pyroxene and olivine. The major element compositions of the phenocrysts were analyzed using EPMA. Plagioclase phenocrysts of the Wangtian'e basaltic trachyandesite are located at the border of andesine and oligoclase ($An_{24.1{\sim}36.0}$) in the An-Ab-Or diagram, and those of the Changbai trachybasalt are labradorite ($An_{54.2{\sim}65.2}$). Pyroxene phenocrysts are augite. Olivine phenocrysts of the Changbai trachybsalt are crysolite ($Mg_{0.79-0.77}Fe_{0.21-0.23}$) and microphenocrysts in the groundmass are hyalosiderite ($Mg_{0.58-0.56}Fe_{0.42-0.44}$). Calculated crystallization temperature of olivine phenocrysts is $1196{\sim}1123^{\circ}C$, clinopyroxene is $1122{\sim}1112^{\circ}C$, phenocrysts and laths of plagioclases are $1118{\sim}1107^{\circ}C$ and $1091{\sim}1089^{\circ}C$, respectively. The temperatures suggests that the olivine phenocrysts, clinopyroxene, plagioclase phenocrysts, and plagioclase laths were crystallized in the magma chamber in sequence.

Material Analysis of the late 19th century to 20th century Women's Hats Ornaments in National Folk Museum of Korea (국립민속박물관 소장 19세기 말~20세기 여성용 쓰개 장식의 재질분석)

  • Lee, Sae Rom;Oh, Joon Suk;Hwang, Min Young
    • Journal of Conservation Science
    • /
    • v.35 no.2
    • /
    • pp.169-176
    • /
    • 2019
  • The material composition of 19 ornaments used for women's hats in the late $19^{th}$ century to $20^{th}$ century, which are kept at National Folk Museum of Korea, was analyzed using SEM-EDS. Sixteen ornaments were composed of $Na_2O$ and PbO, which form adifferent lead glass from those that have been excavated or handed down since ancient times in Korea. The chemical composition analysis has confirmed that two ornaments belong to the mixed alkali glass, while one belongs to the potash glass IIItype. This lead glass is similar in composition to the Japanese craft lead glass that was imported to Joseon during the Japanese colonial era. It is estimated that the lead glass ornaments used in women's hats in the late $19^{th}$ century to $20^{th}$ century were made from raw materials imported from Japan or made from lead glass used for crafts in Japan. This shows that jewelry such as jade and amber, which have been traditionally used in the modern and present ages, have been replaced by craft lead glass imported from Japan.

Hardness and Rebound Properties of Sprayed Green Soil Produced with Functional Additives for the Application to Steep Slopes (기능성 첨가재를 적용한 급경사면용 녹생토의 경도 및 리바운드 특성)

  • Lee, Byung-Jae;Kim, Hyo-Jung;Kim, Yun-Yung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.258-264
    • /
    • 2018
  • In this study, the improved performance of sprayed green soil was evaluated by incorporating functional additives. The optimal mixing ratio of the thickener and super-absorbent polymer, as an additive for moisture supply to the growth of plants within the range of mixing ratios that gives sufficient strength of green soil, was 5% and 1%, respectively. Using Portland cement as a main binder, the pH of the green soil was 9.1. To solve this alkali problem, the mixing proportion was improved so that the pH of the green soil was approximately 7.2 by mixing more than 10% of the chelate resin. The soil conductivity was measured to be 280 ~ 350mS/m under all the mixing conditions. This satisfied the criterion of less than 1000mS/m on the slope surface. As a result of measuring the soil hardness of the green soil prepared under the optimal mixing conditions of functional additives, it satisfied the criteria of 18 ~ 23mm when sprayed under a 1 bar pressure. The rebound rate was less than 15% when spraying green soil on a 75 % slope, and the hardness of the sprayed green soil was more than 18 mm.

New Approaches to the Control of Pathogenic Oral Bacteria (바이오필름을 생성하는 병원성 구강 세균을 제어하는 새로운 접근법)

  • Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.100-108
    • /
    • 2021
  • In the oral cavity, there are hundreds of microbial species that exist as planktonic cells or are incorporated into biofilms. The accumulation and proliferation of pathogenic bacteria in the oral biofilm can lead to caries and periodontitis, which are typical oral diseases. The oral bacteria in the biofilm not only can resist environmental stress inside the oral cavity, but also have a 1,000 times higher resistance to antibiotics than planktonic cells by genes exchange through the interaction between cells in the oral biofilm. Therefore, if the formation of oral biofilm is suppressed or removed, oral diseases caused by bacterial infection can be more effectively prevented or treated. In particular, since oral biofilms have the characteristic of forming a biofilm by gathering several bacteria, quorum sensing, a signaling system between cells, can be a target for controlling the oral biofilm. In addition, a method of inhibiting biofilm formation by using arginine, an alkali-producing substrate of oral bacteria, is used to convert the distribution of oral microorganisms into an environment similar to that of healthy teeth or inhibit the secretion of glucosyltransferase by S. mutans to inhibit the formation of non-soluble glucans. It can be a target to control oral biofilm. This method of inhibiting or removing the oral biofilm formation rather than inducing the death of pathogenic bacteria in the oral cavity will be a new strategy that can selectively prevent or therapeutic avenues for oral diseases including dental caries.

Current Research Trends for Recovery of Rare Earth Elements Contained in Coal Ash (석탄재에 포함된 희토류 회수 연구동향)

  • Kim, Young-Jin;Choi, Moon-Kwan;Seo, Jun-Hyung;Kim, Byung-Ryeol;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.3-14
    • /
    • 2020
  • This study aims to introduce and review on the recovery technologies of rare earth elements(REEs) from coal ash. Many researchers have been carried out by various beneficiation processes, such as particle size separation, magnetic separation, specific gravity, and flotation to recover rare earth elements from coal ash generated from Pulverized Coal(PC) boiler. Through the beneficiation process, it was confirmed that concentration of rare earth elements was much lower than the 4,700 ppm, and that additional enrichment treatment through wet process was needed for the products recovered after the beneficiation process. It was confirmed that the rare earth elements contained in coal ash were applied to the leaching process after pretreatment such as alkali-fusion to improve leaching efficiency. Although beneficiation and leaching methods have been studied, its optimum recovery technologies for rare earth elements not been confirmed up to now, research on the recovery of rare earth contained in coal ash is reported to continue. In case of Korea, the technology for the recovery of rare earth elements from coal ash and coal by-product could not been confirmed up to present. In these reasons, it is urgent to develop technologies such as beneficiation and leaching process continuously.