• Title/Summary/Keyword: Alizarin

Search Result 160, Processing Time 0.034 seconds

Comparison of Gene Expression Levels of Porcine Satellite Cells from Postnatal Muscle Tissue during Differentiation

  • Jeong, Jin Young;Kim, Jang Mi;Rajesh, Ramanna Valmiki;Suresh, Sekar;Jang, Gul Won;Lee, Kyung-Tai;Kim, Tae Hun;Park, Mina;Jeong, Hak Jae;Kim, Kyung Woon;Cho, Yong Min;Lee, Hyun-Jeong
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.219-224
    • /
    • 2013
  • Muscular satellite cell (SC), which is stem cell of postnatal pig, is an important for study of differentiation into adipogenesis, myogenesis, and osteoblastogenesis. In this study, we isolated and examined from pig muscle tissue to determine capacity in proliferate, differentiate, and expression of various genes. Porcine satellite cells (PSC) were isolated from semimembranosus (SM) muscles of 90~100 days old pigs according to standard conditions. The cell proliferation increased in multi-potent cell by Masson's, oil red O, and Alizarin red staining respectively. We performed the expression levels of differentiation related genes using real-time PCR. We found that the differentiation into adipocyte increased expression levels of both fatty acid binding protein 4 (FABP4) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) genes (p<0.01). Myocyte increased the expression levels of the myosin heavy chain (MHC), myogenic factor 5 (Myf5), myogenic regulatory factor (MyoD), and Myogenic factor 4 (myogenin) (p<0.01). Osteoblast increased the expression levels of alkaline phosphatase (ALP) (p<0.01). Finally, porcine satellite cells were induced to differentiate towards adipogenic, myogenic, and osteoblastogenic lineages. Our results suggest that muscle satellite cell in porcine may influence cell fate. Understanding the progression of PSC may lead to improved strategies for augmenting meat quality.

Effects of ibuprofen-loaded TiO2 nanotube dental implants in alloxan-induced diabetic rabbits

  • Kim, Young-Gyo;Kim, Wan-Tae;Jung, Bo Hyun;Yoo, Ki-Yeon;Um, Heung-Sik;Chang, Beom-Seok;Lee, Jae-Kwan;Choi, Won-Youl
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.5
    • /
    • pp.352-363
    • /
    • 2021
  • Purpose: Some systemic conditions, especially diabetes mellitus (DM), adversely affect dental implant success. This study aimed to investigate the effects of ibuprofen-loaded TiO2 nanotube (ILTN) dental implants in alloxan-induced diabetic rabbits. Methods: Twenty-six New Zealand white rabbits were treated with alloxan monohydrate to induce DM. At 2 weeks following DM induction, 3 types of implants (sandblasted, large-grit, and acid-etched [SLA], ILTN, and machined) were placed into the proximal tibia in the 10 rabbits that survived following DM induction. Each type of implant was fitted randomly in 1 of the holes (round-robin method). The animals were administered alizarin (at 3 weeks) and calcein (at 6 weeks) as fluorescent bone markers, and were sacrificed at 8 weeks for radiographic and histomorphometric analyses. Results: TiO2 nanotube arrays of ~70 nm in diameter and ~17 ㎛ in thickness were obtained, and ibuprofen was loaded into the TiO2 nanotube arrays. A total of 26 rabbits were treated with alloxan monohydrate and only 10 rabbits survived. The 10 surviving rabbits showed a blood glucose level of 300 mg/dL or higher, and the implants were placed in these diabetic rabbits. The implant stability quotient (ISQ) and bone-to-implant contact (BIC) values were significantly higher in the ILTN group (ISQ: 61.8, BIC: 41.3%) and SLA group (ISQ: 62.6, BIC: 46.3%) than in the machined group (ISQ: 53.4, BIC: 20.2%), but the difference in the BIC percentage between the SLA and ILTN groups was not statistically significant (P=0.628). However, the bone area percentage was significantly higher in the ILTN group (78.0%) than in the SLA group (52.1%; P=0.000). Conclusions: The: ILTN dental implants showed better stability (ISQ) and BIC than the machined implants; however, these values were similar to the commercially used SLA implants in the 2-week diabetic rabbit model.

Mineralized Polysaccharide Transplantation Modules Supporting Human MSC Conversion into Osteogenic Cells and Osteoid Tissue in a Non-Union Defect

  • Ge, Qing;Green, David William;Lee, Dong-Joon;Kim, Hyun-Yi;Piao, Zhengguo;Lee, Jong-Min;Jung, Han-Sung
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1016-1023
    • /
    • 2018
  • Regenerative orthopedics needs significant devices to transplant human stem cells into damaged tissue and encourage automatic growth into replacements suitable for the human skeleton. Soft biomaterials have similarities in mechanical, structural and architectural properties to natural extracellular matrix (ECM), but often lack essential ECM molecules and signals. Here we engineer mineralized polysaccharide beads to transform MSCs into osteogenic cells and osteoid tissue for transplantation. Bone morphogenic proteins (BMP-2) and indispensable ECM proteins both directed differentiation inside alginate beads. Laminin and collagen IV basement membrane matrix proteins fixed and organized MSCs onto the alginate matrix, and BMP-2 drove differentiation, osteoid tissue self-assembly, and small-scale mineralization. Augmentation of alginate is necessary, and we showed that a few rationally selected small proteins from the basement membrane (BM) compartment of the ECM were sufficient to up-regulate cell expression of Runx-2 and osteocalcin for osteoid formation, resulting in Alizarin red-positive mineral nodules. More significantly, nested BMP-2 and BM beads added to a non-union skull defect, self-generated osteoid expressing osteopontin (OPN) and osteocalcin (OCN) in a chain along the defect, at only four weeks, establishing a framework for complete regeneration expected in 6 and 12 weeks. Alginate beads are beneficial surgical devices for transplanting therapeutic cells in programmed (by the ECM components and alginate-chitosan properties) reaction environments ideal for promoting bone tissue.

Secreotory Leukocyte Protease Inhibitor Regulates Bone Formation via RANKL, OPG, and Runx2 in Rat Periodontitis and MC3T3-E1 Preosteoblast

  • Seung-Yeon Lee;Soon-Jeong Jeong;Myoung-Hwa Lee;Se-Hyun Hwang;Do-Seon Lim;Moon-Jin Jeong
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.282-295
    • /
    • 2023
  • Background: Secretory leukocyte protease inhibitor (SLPI) protects tissues from proteases and promotes cell proliferation and healing. SLPI also reduces periodontal inflammation and alveolar bone resorption by inhibiting proinflammatory cytokine expression in rat periodontal tissues and osteoblasts. However, little is known of the role of SLPI in the expression of osteoclast regulatory factors from osteoblasts, which are crucial for the interaction between osteoblasts and osteoclasts. Therefore, we aimed to determine the effects of SLPI on the regulation of osteoclasts and osteoblasts in LPS-treated alveolar bone and osteoblasts. Methods: Periodontitis was induced in rats using LPS. After each LPS injection, SLPI was injected into the same area. Immunohistochemical analysis was performed with antibodies against SLPI, RANKL, OPG, and Runx2 in the periodontal tissue. RT-PCR and western blotting were performed to determine the expression levels of SLPI, RANKL, OPG, and Runx2 in LPS- and SLPI/LPS-treated MC3T3-E1 cells. SLPI/LPS-treated MC3T3-E1 cells were also stained with Alizarin Red S. Results: Immunohistochemical analysis showed that the expression levels of SLPI, OPG, and Runx2 were higher while that of RANKL was lower in the LPS/SLPI group relative to those in the LPS group. The mRNA and protein expression of SLPI, OPG, and Runx2 was higher in SLPI/LPS/MC3T3-E1 cells than in LPS/MC3T3-E1 cells, and RANKL expression was lower. During differentiation, OPG and Runx2 protein levels were higher whereas RANKL levels were lower in SLPI/LPS/MC3T3-E1 than in LPS/MC3T3-E1 cells on days 0, 4, 7, and 10. In addition, mineralization and matrix deposition were higher in SLPI/LPS/MC3T3-E1 than in LPS/MC3T3-E1 on days 7 and 10. SLPI decreased RANKL expression in LPS-treated alveolar bone and osteoblasts but increased the expression of OPG and Runx2. Conclusion: SLPI can be considered as a regulatory molecule that indirectly regulates osteoclast activation via osteoblasts and promotes osteoblast differentiation.

THE ASPECT OF PROLIFERATION AND BONE NODULE FORMATION IN OSTEOBLAST-LIKE CELLS DERIVED FROM FETAL RAT CALVARIA IN VITRO (백서 태자 두 개관에서 유래된 조골세포의 증식 및 골결절 형성양상)

  • Kim, Shi-Hyeong;Nam, Soon-Hyeun;Shin, Hong-In
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 1997
  • The purpose of this study was to investigate the aspects of proliferation and bone nodule formation of osteogenic precursor cells. To determine the effects of ascorbic acid and dexamethasone upon capacity of osteoblast proliferation and bone nodule formation, cells were maintained in the presence of one or some of these additives for up to 30 days. Group I culture was maintained in standard medium(DMEM plus 10% plus antibiotics), group II was maintained in supplemented medium containing dexamethasone, group III was maintained in supplemented medium containing ascorbic acid and sodium-${\beta}$-glycerophosphate, and group IV was maintained in supplemented containing ascorbic acid, sodium-${\beta}$-glycerophosphate and dexamethasone. Morphology of bone nodules was observed with light microscope and electron microscope. The results were as follows: ${\bullet}$ Proliferation capacity of osteoblasts was not affected by single use of dexamethasone, but it was chiefly affected by ascorbic acid. ${\bullet}$ Cellular morphology was fibroblastic appearance initially, but, it was gradually changed to polygonal shape accompanied by confluency stage. ${\bullet}$ Pluripotent mesenchymal cells existed during primary culture, they were differentiated to adipocyte, chondrocyte, osteocyte according to culture condition. ${\bullet}$ Dexamethasone increased bone nodule formation under the condition that the culture was maintained with supplemented medium ascorbic acid and sodium-${\beta}$-glycerophosphate. ${\bullet}$ when the cultures were stained with alizarin red, the group supplemented with dexamethasone, ascorbic acid and sodium-${\beta}$-glycerophosphate showed the marked increase of bone nodule formation, but the group supplemented with ascorbic acid and sodium-${\beta}$-glycerophosphate revealed only small amounts of bone nodules. And the groups cultured without ascorbic acid showed no observed any of bone-like mass independent of dexamethasone addition.

  • PDF

Effect of RGD peptide coating of implant titanium surface on human mesenchymal stem cell response (양극산화 티타늄 표면에 서로 다른 RGD 펩타이드 코팅 방법이 인간간엽줄기세포 반응에 미치는 영향)

  • Kim, Min-Su;Jeong, Chang-Mo;Jeon, Young-Chan;Ryu, Jae-Jun;Huh, Jung-Bo;Yun, Mi-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.3
    • /
    • pp.245-253
    • /
    • 2011
  • Purpose: The aim of this in vitro study was to estimate surface characteristic after peptide coating and investigate biological response of human mesenchymal stem cell to anodized titanium discs coated with RGD peptide by physical adhesion and chemical fixation. Materials and methods: Fluorescence isothiocyanate (FITC) modified RGD-peptide was coated on the anodized titanium discs (diameter 12 mm, height 3 mm) using two methods. One was physical adhesion method and the other was chemical fixation method. Physical adhesion was performed by dip and dry procedure, chemical fixation was performed by covalent bond via silanization. In this study, human mesenchymal stem cell was used for experiments. The experiments consisted of surface characteristic evaluation after peptide coating, analysis about cell adhesion, proliferation, differentiation, and mineralization. Obtained data are statistically treated using Kruskal-Wallis test and Bonferroni test was performed as post hoc test (P=.05). Results: The evaluation of FE-SEM images revealed no diffenrence at micro-surfaces between each groups. Total coating dose was higher at physical adhesion experimental group than at chemical fixation experimental group. In cell adhesion and proliferation, RGD peptide coating did not show a statistical significance compared with control group (P>.05). In cell differentiation and mineralization, physical adhesion method displayed significantly increased levels compared with control group and chemical fixation method (P<.05). Conclusion: RGD peptide coating seems to enhance osseointegration by effects on the response of human mesenchymal stem cell. Especially physical adhesion method showed more effective than chemical fixation method on response of human mesenchymal stem cell.

Osteogenesis of Human Adipose Tissue Derived Mesenchymal Stem Cells (ATMSCs) Seeded in Bioceramic-Poly D,L-Lactic-co-Glycolic Acid (PLGA) Scaffold (Bioceramic-Poly D,L-Lactic-co-Glycolic Acid(PLGA) Scaffold에 접종한 인간지방조직-유래 중간엽 줄기세포의 골 형성)

  • Kang, Yu-Mi;Hong, Soon-Gab;Do, Byung-Rok;Kim, Hae-Kwon;Lee, Joon-Yeong
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.87-98
    • /
    • 2011
  • The present experiment was performed to evaluate the osteogenic differentiation of human adipose tissue derived mesenchymal stem cells (ATMSCs) seeded in bioceramic-poly D,L-latic-co-glycolic acid (PLGA) scaffold. Osteogenic differentiation of ATMSCs were induced using the osteogenic induction (OI) medium. ATMSCs were cultured with OI medium during 28 days in well plate. The proliferation of ATMSCs in OI medium group was significantly increased for 14 days of plate culture but slowed after 21 days. On the other hand, proliferation in the control group showed constant increase for 28 days of culturing. The alkaline phosphatase (ALP) activity of ATMSCs in OI medium group increased during the 21 days of culture but decreased on 28 days. However, in control group ALP activity of ATMSCs was continuously decreased as time goes. Nodule was observed at 21 days of culture in OI medium group and confirmed accumulation of calcium in cell by alizarin red staining. ATMSCs were seeded in PLGA scaffold or in Bioceramic-PLGA scaffold, and cultured with OI medium. ALP activity of ATMSCs by osteoblast differentiation in each scaffold increased on 21 days of culture and decreased rapidly on 28 days. ALP activity of ATMSCs was increased highly in Bioceramic-PLGA scaffold compared to PLGA scaffold on 21 days of culturing. SEM-EDS analysis demonstrated that calcium and phosphate content and Ca/P ratio in Bioceramic-PLGA scaffold increased higher than in PLGA scaffold. Biodegradability of scaffold at 56 days after implantation showed that Bioceramic-PLGA scaffold was more biodegradable than PLGA scaffold. The results demonstrated that the differentiation of ATMSCs to osteoblast were more effective in scaffold culture than well plate culture. Bioceramic increased cell adhesion rate on scaffold and ALP activity by osteoblast differentiation. Also, bioceramic was considered to increase the calcium and phosphate in scaffold when ATMSCs was mineralized by osteogenic differentiation. Bioceramic-PLGA scaffold enhanced the osteogenesis of seeded ATMSCs compared to PLGA scaffold.

Effects of Cultivated Wild Panax ginseng Extract on the Proliferation, Differentiation and Mineralization of Osteoblastic MC3T3-E1 Cells (산양삼(cultivated wild Panax ginseng) 추출물이 조골세포 활성에 미치는 영향)

  • Seo, Hyun-Ju;Eo, Hyun Ji;Kim, Hyun Jun;Jeon, Kwon Seok;Park, Gwang Hun;Hong, Se Chul;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.227-236
    • /
    • 2020
  • Panax ginseng C.A. Meyer (P. ginseng) is known to exert a wide range of pharmacological effects both in vitro and in vivo. Although studies on ginsenoside, antioxidant activity, and anticancer effect of the cultivated wild Panax ginseng (CWP) have been conducted, there is little research on the effect of CWP extract on bone metabolism. In this study, we investigated the potential anti-osteoporotic properties of CWP on the growth and differentiation of MC3T3-E1 cells. CWP significantly increased the viability and proliferation of MC3T3-E1 cells. CWP activated intracellular alkaline phosphatase (ALP) activity in MC3T3-E1 cells. In addition, CWP increased the mineralized nodules in MC3T3-E1 cells. Furthermore, CWP increased the expression of genes such as Runx2, ALP, OPN and OCN associated with osteoblast growth and differentiation in a dose-dependent manner.

Identification of Matrix Mineralization-Related Genes in Human Periodontal Ligament Cells Using cDNA Microarray (cDNA microarray에 의한 치주인대세포의 광물화 결절형성에 관여하는 유전자들의 분석)

  • Shin, Jae-Hee;Park, Jin-Woo;Yeo, Shin-Il;Noh, Woo-Chang;Kim, Moon-Kyu;Kim, Jung-Chul;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.sup2
    • /
    • pp.447-463
    • /
    • 2007
  • Periodontal ligament (PDL) cells have been known as multipotential cells, and as playing an important rolesin periodontal regeneration. The PDL cells are composed of heterogeneous cell populations which have the capacity to differentiate into either cementoblasts or osteoblasts, depending on needs and conditions. Therefore, PDL cells have the capacity to produce mineralized nodules in vitro in mineralization medium which include ascorbic acid, ${\beta}$-glycerophosphate and dexamethasone. In spite of these well-known osteoblast like properties of PDL cells, very little is known about the molecules involved in the formation of the mineralized nodules in the PDL cells. In the present study, we analysed gene-expression profiles during the mineralization process of cultured PDL cells by means of a cDNA microarray consisting of 3063 genes. Nodules of mineralized matrix were strongly stained with alizarin red S on the PDL cells cultured in the media with mineralization supplements. Among 3,063 genes analyzed, 35 were up-regulated more than two-fold at one or more time points in cells that developed matrix mineralization nodules, and 38 were down-regulated to less than half their normal level of expression. In accord with the morphological change we observed, several genes related to calcium-related or mineral metabolism were induced in PDL cells during osteogenesis, such as IGF-II and IGFBP-2. Proteogycan 1, fibulin-5, keratin 5, ,${\beta}$-actin, ${\alpha}$-smooth muscle actin and capping protein, and cytoskeleton and extracellular matrix proteins were up-regulated during mineralization. Several genes encoding proteins related to apoptosis weredifferentially expressed in PDL cells cultured in the medium containing mineralization supplements. Dkk-I and Nip3, which are apoptosis-inducing agents, were up-regulated, and Btf and TAXlBP1, which have an anti-apoptosis activity, were down-regulated during mineralization. Also periostin and S100 calciumbinding protein A4 were down-regulated during mineralization.

The influence of magnet on tissue healing after immediate implantation in fresh extraction sites in dogs (성견에서 발치 후 즉시 식립 임플란트에 설치한 자석이 주위 조직에 미치는 영향)

  • Yu, Seok-Min;Cho, In-Ho;Shin, Soo-Yeon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.435-444
    • /
    • 2009
  • Statement of problem: The clinical use of electric and electomagnetic fields for fracture healing applications began in the early 1970s. Since then, several technologies have been developed and shown to promote healing of fractures. Developments of these devices have been aided in recent years by basic research and several well controlled clinical trials not only in the medical field but in dentistry. Purpose: The purpose of this study was to compare alveolar bone reduction following immediate implantation using implants onto which magnets were attached in fresh extracted sockets. Material and methods: Four mongrel dogs were involved. Full buccal and lingual mucoperiosteal flaps were elevated and third and fourth premolars of the mandible were removed. Implants with magnets and implants without magnets were installed in the fresh extracted sockets and after 3 months of healing the animals were sacrificed. The mandibles were dissected and each implant sites were sampled and processed for histological examination. Results: The marginal gaps that were present between the implant and walls of the sockets at the implantation stage disappeared in both groups as a result of bone fill and resorption of the bone crest. The buccal bone crests were located apical of its lingual counterparts. At the 12 week interval the mean of marginal bone resorption in the control group was significantly higher than that of the magnet group. The majority of specimens in magnet group presented early bone formation and less resorption of the buccal marginal bone compared to the control group. Conclusion: Within the limitations of this study, it could be concluded that implants with magnets attached in the early stages of implantation may provide more favorable conditions for early bone formation and reduce resorption and remodeling of marginal bone.