• Title/Summary/Keyword: Alizarin

Search Result 160, Processing Time 0.027 seconds

A Study for the Conformity Assessment on the Natural Dye by HPLC (1) (HPLC를 활용한 천연염료 적합성 평가 연구 (1))

  • Lee, Eun Mi;Oh, Dong Ki;Yoon, Hong Jin;Kim, Jong Hoon
    • Fashion & Textile Research Journal
    • /
    • v.20 no.6
    • /
    • pp.752-758
    • /
    • 2018
  • Due to environmental pollution and human hazards of some synthetic dyes, the global fashion companies are increasingly interested in eco-friendly products, especially natural dye. For the globalization of natural dyeing industry based on this concern, however, there are some deficiencies of standardization, specification, and conformity assessment on natural dyestuffs as well as natural dyeing process. These obstacles should be not only studied but also defined for a commercial transaction. Accordingly, a study for conformity assessment on commercialized natural dyestuffs (red) was conducted by HPLC analysis in this study. As the results of HPLC analysis, alizarin and purpurin, representative index ingredients, were detected in most of the samples, but the index ingredient content in each sample was different. In addition, some samples showed the variety of peaks including the index ingredients and others. It was inferred that the representative index ingredients could be used on the traceability of natural sourced dyestuffs. These results are related to the index ingredient consistency, standardization, and reproducibility of natural dyed products including such as yarns, fabrics, garments, and so on. Therefore, the present study was demonstrated that in order to determine the conformity assessment system for the satisfaction of all stakeholders, the offering of information on the origin, manufacturing process, and index ingredient content of natural dyes should be prioritized.

Effects of the cathepsin K inhibitor with mineral trioxide aggregate cements on osteoclastic activity

  • Kim, Hee-Sun;Kim, Soojung;Ko, Hyunjung;Song, Minju;Kim, Miri
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.2
    • /
    • pp.17.1-17.10
    • /
    • 2019
  • Objectives: Root resorption is an unexpected complication after replantation procedures. Combining anti-osteoclastic medicaments with retrograde root filling materials may avert this resorptive activity. The purpose of this study was to assess effects of a cathepsin K inhibitor with calcium silicate-based cements on osteoclastic activity. Methods: MC3T3-E1 cells were cultured for biocompatibility analyses. RAW 264.7 cells were cultured in the presence of the receptor activator of nuclear factor-kappa B and lipopolysaccharide, followed by treatment with Biodentine (BIOD) or ProRoot MTA with or without medicaments (Odanacatib [ODN], a cathepsin inhibitor and alendronate, a bisphosphonate). After drug treatment, the cell counting kit-8 assay and Alizarin red staining were performed to evaluate biocompatibility in MC3T3-E1 cells. Reverse-transcription polymerase chain reaction, tartrate-resistant acid phosphatase (TRAP) staining and enzyme-linked immunosorbent assays were performed in RAW 264.7 cells to determine the expression levels of inflammatory cytokines, interleukin $(IL)-1{\beta}$, IL-6, tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and prostaglandin E2 (PGE2). Data were analyzed by one-way analysis of variance and Tukey's post hoc test (p < 0.05). Results: Biocompatibility results showed that there were no significant differences among any of the groups. RAW 264.7 cells treated with BIOD and ODN showed the lowest levels of $TNF-{\alpha}$ and PGE2. Treatments with BIOD + ODN were more potent suppressors of inflammatory cytokine expression (p < 0.05). Conclusion: The cathepsin K inhibitor with calcium silicate-based cement inhibits osteoclastic activity. This may have clinical application in preventing inflammatory root resorption in replanted teeth.

Protective Effects of Ursolic Acid on Osteoblastic Differentiation via Activation of IER3/Nrf2

  • Lee, Sang-im
    • Journal of dental hygiene science
    • /
    • v.19 no.3
    • /
    • pp.198-204
    • /
    • 2019
  • Background: Oxidative stress is a known to be associated with in the pathogenesis of many inflammatory diseases, including periodontitis. Ursolic acid is a pentacyclic triterpenoid with has antimicrobial, antioxidative, and anticancer properties. However, the role of ursolic acid in the regulating of osteogenesis remains undetermined. This study was aimed to elucidate the crucial osteogenic effects of ursolic acid and its ability to inhibit oxidative stress by targeting the immediate early response 3 (IER3)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Methods: Cell proliferation was determined using water-soluble tetrazolium salt assay, cell differentiation was evaluated by alkaline phosphatase (ALP) activity, and formation of calcium nodules was detected using alizarin red S stain. Generation of reactive oxygen species (ROS) was determined using by DCFH-DA fluorescence dye in hydrogen peroxide ($H_2O_2$)-treated MG-63 cells. Expression levels of IER3, Nrf2, and heme oxygenase-1 (HO-1) were analyzed using western blot analysis. Results: Our results showed that ursolic acid up-regulated the proliferation of osteoblasts without any cytotoxic effects, and promoted ALP activity and mineralization. $H_2O_2$-induced ROS generation was found to be significantly inhibited on treatment with ursolic acid. Furthermore, in $H_2O_2$-treated cells, the expression of the early response genes: IER3, Nrf2, and Nrf2-related phase II enzyme (HO-1) was enhanced in the presence of ursolic acid. Conclusion: The key findings of the present study elucidate the protective effects of ursolic acid against oxidative stress conditions in osteoblasts via the IER3/Nrf2 pathway. Thus, ursolic acid may be developed as a preventative and therapeutic agent for mineral homeostasis and inflammatory diseases caused due to oxidative injury.

Combined Treatment with Low-Level Laser and rhBMP-2 Promotes Differentiation and Mineralization of Osteoblastic Cells under Hypoxic Stress

  • Heo, Jin-Ho;Choi, Jeong-Hun;Kim, In-Ryoung;Park, Bong-Soo;Kim, Yong-Deok
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.793-801
    • /
    • 2018
  • BACKGROUND: The aim of this study was to evaluate the combined effect of low-level laser treatment (LLLT) and recombinant human bone morphological protein-2 (rhBMP-2) applied to hypoxic-cultured MC3T3-E1 osteoblastic cells and to determine possible signaling pathways underlying differentiation and mineralization of osteoblasts under hypoxia. METHODS: MC3T3-E1 cells were cultured under 1% oxygen tension for 72 h. Cell cultures were divided into four groups: normoxia control, low-level laser (LLL) alone, rhBMP-2 combined with LLLT, and rhBMP-2 under hypoxia. Laser irradiation was applied at 0, 24, and 48 h. Cells were treated with rhBMP-2 at 50 ng/mL. Alkaline phosphatase activity was measured at 3, 7, and 14 days to evaluate osteoblastic differentiation. Cell mineralization was determined with Alizarin red S staining at 7 and 14 days. Western blot assays were performed to evaluate whether p38/protein kinase D (PKD) signaling was involved. RESULTS: The results indicate that LLLT and rhBMP-2 synergistically increased alkaline phosphatase (ALP) activity and mineralization. Western blot analyses showed that expression of type I collagen, runt-related transcription factor 2 (RUNX2), and Osterix (Osx), increased and expression of hypoxia-inducible factor 1-alpha ($HIF-1{\alpha}$), decreased more in the LLLT and rhBMP-2 combined group than in the rhBMP-2 or LLL alone groups. Moreover, LLLT and rhBMP-2 stimulated p38 phosphorylation and rhBMP-2 and LLLT increased Prkd1 phosphorylation. CONCLUSION: Combined treatment with rhBMP-2 and LLL induced differentiation and mineralization of hypoxic-cultured MC3T3-E1 osteoblasts by activating p38/PKD signaling in vitro.

Effects of Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture on Osteoblast Differentiation and Osteoclast Formation (방사선 육종 차조기와 백출 복합물이 조골세포와 파골세포의 활성에 미치는 영향)

  • Sim, Boo-Yong;Ji, Joong-Gu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.168-177
    • /
    • 2021
  • The effects of the Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture on the activities of osteoblast differentiation and the restraint of osteoclast formation were investigated. the Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture in the human osteoblast "MG-63" cell, was examined in relation to alkaline phosphatase (ALP) activity and alizarin red stains. In order to observe the effects of osteoclasts formation, we analyzed RAW 264.7 cell tartrate-resistant acid phosphatase (TRAP) activity and TRAP stains. In cytotoxicity testing, it was confirmed that apple extract is safe at a concentration of 50 ㎍/㎖ or less. The ALP activity and Bone calcification formation ability were the Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture had a lower activity than that of control group. However the Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture significantly reduced activity of TRAP in the RAW 264.7 osteoclastic cell generation and effectively Inhibited the TRAP(+) multinuclear cells. Thus, our results demonstrate that the Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture enhances the inhibitory activity of bone-resorption in RAW 264.7 cells. In conclusion, the Perilla frutescens var. crispa and Atractylodes macrocephala Koidzumi mixture seem to be effective in the prevention and treatment of bone related disorders.

Biocompatibility and Bioactivity of Four Different Root Canal Sealers in Osteoblastic Cell Line MC3T3-El

  • Jun, Nu-Ri;Lee, Sun-Kyung;Lee, Sang-Im
    • Journal of dental hygiene science
    • /
    • v.21 no.4
    • /
    • pp.243-250
    • /
    • 2021
  • Background: Endodontic sealers or their toxic components may become inflamed and lead to delayed wound healing when in direct contact with periapical tissues over an extended period. Moreover, an overfilled sealer can directly interact with adjacent tissues and may cause immediate necrosis or further resorption. Therefore, the treatment outcome conceivably depends on the endodontic sealer's biocompatibility and osteogenic potential. This study aimed to evaluate the cell viability and osteogenic effects of four different sealers in osteoblastic cells. Methods: AH Plus (resin-based sealer), Pulp Canal Sealer EWT (zinc oxide-eugenol sealer), BioRoot RCS (calcium silicate-based sealer), and Well-Root ST (MTA-based calcium silicate sealer) were mixed strictly according to the manufacturer's instructions, and dilutions of sealer extracts (1/2, 1/5 and 1/10) were determined. Cell viability was measured using the water-soluble tetrazolium-8 (WST-8) assay. Differentiation was assessed by alkaline phosphatase (ALP) activity and mineralized nodule formation by Alizarin Red S staining. Results: The cell viability of the extracts derived from the sealers excluding Well-Root ST was concentration dependent, with sealer extracts having the least viability at a 1/2 dilution. At sealer extract dilution of 1/10, the test groups showed the same survival rate as that control group, with the exception of BioRoot RCS. Among all experimental groups, BioRoot RCS showed the highest cell viability after 48 hours. The ALP activity was significantly higher in a concentration-dependent manner. Furthemore, all four materials promoted ALP activity and mineralized nodule formation compared to the control at 1/10 dilutions. Conclusion: This is the first study to highlight the differences in biological activity of these four materials. These results suggest that the composition of root canal sealers appears to alter the form of biocompatibility and osteoblastic differentiation.

Nicotinamide phosphoribosyltransferase regulates the cell differentiation and mineralization in cultured odontoblasts

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Seo, Jeong-Yeon;Lim, HyangI;Kim, Tae-Hyeon;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Chun, Hong Sung;Park, Joo-Cheol;Kim, Do Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • The aim of the present study was to investigate the physiological role of nicotinamide phosphoribosyltransferase (NAMPT) associated with odontogenic differentiation during tooth development in mice. Mouse dental papilla cell-23 (MDPC-23) cells cultured in differentiation media were stimulated with the specific NAMPT inhibitor, FK866, and Visfatin (NAMPT) for up to 10 days. The cells were evaluated after 0, 4, 7, and 10 days. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The mineralization assay was performed by staining MDPC-23 cells with Alizarin Red S solution. After cultivation, MDPC-23 cells were harvested for quantitative PCR or Western blotting. Analysis of variance was performed using StatView 5.0 software (SAS Institute Inc., Cary, NC, USA). Statistical significance was set at p < 0.05. The expression of NAMPT increased during the differentiation of murine odontoblast-like MDPC-23 cells. Furthermore, the up-regulation of NAMPT promoted odontogenic differentiation and accelerated mineralization through an increase in representative odontoblastic biomarkers, such as dentin sialophosphoprotein, dentin matrix protein-1, and alkaline phosphatase in MDPC-23 cells. However, treatment of the cells with the NAMPT inhibitor, FK866, attenuated odontogenic differentiation, as evidenced by the suppression of odontoblastic biomarkers. These data indicate that NAMPT regulated odontoblastic differentiation through the regulation of odontoblastic biomarkers. The increase in NAMPT expression in odontoblasts was closely related to the formation of the extracellular matrix and dentin via the Runx signaling pathway. Therefore, these data suggest that NAMPT is a critical regulator of odontoblast differentiation during tooth development.

Metformin enhances the osteogenic activity of rat bone marrow mesenchymal stem cells by inhibiting oxidative stress induced by diabetes mellitus: an in vitro and in vivo study

  • Kai Dong;Wen-Juan Zhou;Zhong-Hao Liu
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.1
    • /
    • pp.54-68
    • /
    • 2023
  • Purpose: The purpose of this study was to determine whether metformin (MF) could alleviate the expresssion of reactive oxygen species (ROS) and improve the osteogenic ability of bone marrow mesenchymal stem cells derived from diabetic rats (drBMSCs) in vitro, and to evaluate the effect of MF on the ectopic osteogenesis of drBMSCs in a nude mouse model in vivo. Methods: BMSCs were extracted from normal and diabetic rats. In vitro, a cell viability assay (Cell Counting Kit-8), tests of alkaline phosphatase (ALP) activity, and western blot analysis were first used to determine the cell proliferation and osteogenic differentiation of drBMSCs that were subjected to treatment with different concentrations of MF (0, 50, 100, 200, 500 µM). The cells were then divided into 5 groups: (1) normal rat BMSCs (the BMSCs derived from normal rats group), (2) the drBMSCs group, (3) the drBMSCs + Mito-TEMPO (10 µM, ROS scavenger) group, (4) the drBMSCs + MF (200 µM) group, and (5) the drBMSCs + MF (200 µM) + H2O2 (50 µM, ROS activator) group. Intracellular ROS detection, a senescence-associated β-galactosidase assay, ALP staining, alizarin red staining, western blotting, and immunofluorescence assays were performed to determine the effects of MF on oxidative stress and osteogenic differentiation in drBMSCs. In vivo, the effect of MF on the ectopic osteogenesis of drBMSCs was evaluated in a nude mouse model. Results: MF effectively reduced ROS levels in drBMSCs. The cell proliferation, ALP activity, mineral deposition, and osteogenic-related protein expression of drBMSCs were demonstrably higher in the MF-treated group than in the non-MF-treated group. H2O2 inhibited the effects of MF. In addition, ectopic osteogenesis was significantly increased in drBMSCs treated with MF. Conclusions: MF promoted the proliferation and osteogenic differentiation of drBMSCs by inhibiting the oxidative stress induced by diabetes and enhenced the ectopic bone formation of drBMSCs in nude mice.

Effects of CTHRC1 on odontogenic differentiation and angiogenesis in human dental pulp stem cells

  • Jong-soon Kim;Bin-Na Lee;Hoon-Sang Chang;In-Nam Hwang;Won-Mann Oh;Yun-Chan Hwang
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.18.1-18.10
    • /
    • 2023
  • Objectives: This study aimed to determine whether collagen triple helix repeat containing-1 (CTHRC1), which is involved in vascular remodeling and bone formation, can stimulate odontogenic differentiation and angiogenesis when administered to human dental pulp stem cells (hDPSCs). Materials and Methods: The viability of hDPSCs upon exposure to CTHRC1 was assessed with the WST-1 assay. CTHRC1 doses of 5, 10, and 20 ㎍/mL were administered to hDPSCs. Reverse-transcription polymerase reaction was used to detect dentin sialophosphoprotein, dentin matrix protein 1, vascular endothelial growth factor, and fibroblast growth factor 2. The formation of mineralization nodules was evaluated using Alizarin red. A scratch wound assay was conducted to evaluate the effect of CTHRC1 on cell migration. Data were analyzed using 1-way analysis of variance followed by the Tukey post hoc test. The threshold for statistical significance was set at p < 0.05. Results: CTHRC1 doses of 5, 10, and 20 ㎍/mL had no significant effect on the viability of hDPSCs. Mineralized nodules were formed and odontogenic markers were upregulated, indicating that CTHRC1 promoted odontogenic differentiation. Scratch wound assays demonstrated that CTHRC1 significantly enhanced the migration of hDPSCs. Conclusions: CTHRC1 promoted odontogenic differentiation and mineralization in hDPSCs.

Niclosamide Inhibits Aortic Valve Interstitial Cell Calcification by Interfering with the GSK-3β/β-Catenin Signaling Pathway

  • Radhika Adhikari;Saugat Shiwakoti;Eunmin Kim;Ik Jun Choi;Sin-Hee Park;Ju-Young Ko;Kiyuk Chang;Min-Ho Oak
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.515-525
    • /
    • 2023
  • The most common heart valve disorder is calcific aortic valve stenosis (CAVS), which is characterized by a narrowing of the aortic valve. Treatment with the drug molecule, in addition to surgical and transcatheter valve replacement, is the primary focus of researchers in this field. The purpose of this study is to determine whether niclosamide can reduce calcification in aortic valve interstitial cells (VICs). To induce calcification, cells were treated with a pro-calcifying medium (PCM). Different concentrations of niclosamide were added to the PCM-treated cells, and the level of calcification, mRNA, and protein expression of calcification markers was measured. Niclosamide inhibited aortic valve calcification as observed from reduced alizarin red s staining in niclosamide treated VICs and also decreased the mRNA and protein expressions of calcification-specific markers: runt-related transcription factor 2 and osteopontin. Niclosamide also reduced the formation of reactive oxygen species, NADPH oxidase activity and the expression of Nox2 and p22phox. Furthermore, in calcified VICs, niclosamide inhibited the expression of β-catenin and phosphorylated glycogen synthase kinase (GSK-3β), as well as the phosphorylation of AKT and ERK. Taken together, our findings suggest that niclosamide may alleviate PCM-induced calcification, at least in part, by targeting oxidative stress mediated GSK-3β/β-catenin signaling pathway via inhibiting activation of AKT and ERK, and may be a potential treatment for CAVS.