• 제목/요약/키워드: Algorithms

검색결과 16,541건 처리시간 0.041초

Prediction of Prognosis in Glioblastoma Using Radiomics Features of Dynamic Contrast-Enhanced MRI

  • Elena Pak;Kyu Sung Choi;Seung Hong Choi;Chul-Kee Park;Tae Min Kim;Sung-Hye Park;Joo Ho Lee;Soon-Tae Lee;Inpyeong Hwang;Roh-Eul Yoo;Koung Mi Kang;Tae Jin Yun;Ji-Hoon Kim;Chul-Ho Sohn
    • Korean Journal of Radiology
    • /
    • 제22권9호
    • /
    • pp.1514-1524
    • /
    • 2021
  • Objective: To develop a radiomics risk score based on dynamic contrast-enhanced (DCE) MRI for prognosis prediction in patients with glioblastoma. Materials and Methods: One hundred and fifty patients (92 male [61.3%]; mean age ± standard deviation, 60.5 ± 13.5 years) with glioblastoma who underwent preoperative MRI were enrolled in the study. Six hundred and forty-two radiomic features were extracted from volume transfer constant (Ktrans), fractional volume of vascular plasma space (Vp), and fractional volume of extravascular extracellular space (Ve) maps of DCE MRI, wherein the regions of interest were based on both T1-weighted contrast-enhancing areas and non-enhancing T2 hyperintense areas. Using feature selection algorithms, salient radiomic features were selected from the 642 features. Next, a radiomics risk score was developed using a weighted combination of the selected features in the discovery set (n = 105); the risk score was validated in the validation set (n = 45) by investigating the difference in prognosis between the "radiomics risk score" groups. Finally, multivariable Cox regression analysis for progression-free survival was performed using the radiomics risk score and clinical variables as covariates. Results: 16 radiomic features obtained from non-enhancing T2 hyperintense areas were selected among the 642 features identified. The radiomics risk score was used to stratify high- and low-risk groups in both the discovery and validation sets (both p < 0.001 by the log-rank test). The radiomics risk score and presence of isocitrate dehydrogenase (IDH) mutation showed independent associations with progression-free survival in opposite directions (hazard ratio, 3.56; p = 0.004 and hazard ratio, 0.34; p = 0.022, respectively). Conclusion: We developed and validated the "radiomics risk score" from the features of DCE MRI based on non-enhancing T2 hyperintense areas for risk stratification of patients with glioblastoma. It was associated with progression-free survival independently of IDH mutation status.

How to Combine Diffusion-Weighted and T2-Weighted Imaging for MRI Assessment of Pathologic Complete Response to Neoadjuvant Chemoradiotherapy in Patients with Rectal Cancer?

  • Jong Keon Jang;Chul-min Lee;Seong Ho Park;Jong Hoon Kim;Jihun Kim;Seok-Byung Lim;Chang Sik Yu;Jin Cheon Kim
    • Korean Journal of Radiology
    • /
    • 제22권9호
    • /
    • pp.1451-1461
    • /
    • 2021
  • Objective: Adequate methods of combining T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) to assess complete response (CR) to chemoradiotherapy (CRT) for rectal cancer are obscure. We aimed to determine an algorithm for combining T2WI and DWI to optimally suggest CR on MRI using visual assessment. Materials and Methods: We included 376 patients (male:female, 256:120; mean age ± standard deviation, 59.7 ± 11.1 years) who had undergone long-course CRT for rectal cancer and both pre- and post-CRT high-resolution rectal MRI during 2017-2018. Two experienced radiologists independently evaluated whether a tumor signal was absent, representing CR, on both post-CRT T2WI and DWI, and whether the pre-treatment DWI showed homogeneous hyperintensity throughout the lesion. Algorithms for combining T2WI and DWI were as follows: 'AND,' if both showed CR; 'OR,' if any one showed CR; and 'conditional OR,' if T2WI showed CR or DWI showed CR after the pre-treatment DWI showed homogeneous hyperintensity. Their efficacies for diagnosing pathologic CR (pCR) were determined in comparison with T2WI alone. Results: Sixty-nine patients (18.4%) had pCR. AND had a lower sensitivity without statistical significance (vs. 62.3% [43/69]; 59.4% [41/69], p = 0.500) and a significantly higher specificity (vs. 87.0% [267/307]; 90.2% [277/307], p = 0.002) than those of T2WI. Both OR and conditional OR combinations resulted in a large increase in sensitivity (vs. 62.3% [43/69]; 81.2% [56/69], p < 0.001; and 73.9% [51/69], p = 0.008, respectively) and a large decrease in specificity (vs. 87.0% [267/307]; 57.0% [175/307], p < 0.001; and 69.1% [212/307], p < 0.001, respectively) as compared with T2WI, ultimately creating additional false interpretations of CR more frequently than additional identification of patients with pCR. Conclusion: AND combination of T2WI and DWI is an appropriate strategy for suggesting CR using visual assessment of MRI after CRT for rectal cancer.

UAV와 LiDAR를 활용한 토석채취지의 시계열 변화 분석 (Time-series Change Analysis of Quarry using UAV and Aerial LiDAR)

  • 박동환;심우담
    • 한국지리정보학회지
    • /
    • 제27권2호
    • /
    • pp.34-44
    • /
    • 2024
  • 최근 기후변화로 인한 이상기후로 인해 홍수, 산사태, 토사 유출과 같은 자연재난의 피해가 급증하고 있다. 우리나라는 국토의 63% 이상이 산지라는 지형적 특성 때문에 사면 재해에 취약하며, 특히, 토석채취지는 소단형성 과정에서 흙과 암석을 채굴하기 때문에 산사태가 발생할 확률이 높으며, 사업장 내부 뿐만 아니라, 외부까지 재해발생 위험이 높은 지역이다. 이에 따라, 본 연구는 토석채취지의 모니터링을 위해 UAV와 항공LiDAR를 활용하여 DEM을 구축하고 시계열 변화 분석을 수행하였으며, 토석채취지 모니터링을 위한 최적의 DEM 구축방법을 제안하였다. DEM 구축을 위해 UAV와 LiDAR 기반 Point Cloud 구축하고 Aggressive Classification(AC), Conservative Classification(CC), Standard Classification(SC) 등 세가지 알고리즘을 활용하여 지면부를 추출하였다. 알고리즘에 따라 구축한 UAV 및 LiDAR기반 DEM은 수치지형도 기반 DEM과의 비교를 통해 정확도를 평가하였다. 정확도 평가 결과, 알고리즘 방법간의 높이 차는 최대 1 m 내외로 차이가 거의 없었다. 또한, 음영기복도를 활용한 지면부의 질감을 시각적 비교해보았을 때 CC 알고리즘의 성능이 가장 우수하였으며, 산림지역에서 LiDAR 기반 DEM이 높은 정확도를 보였다. 구축한 최적의 DEM을 통해 토석채취지의 시계열 변화량을 비교한 결과, 토석채취지역, 소단 형성지역 등 시계열 변화에 따른 토석채취지의 변화지역 탐지가 가능하였다.

A Study on the Intelligent Online Judging System Using User-Based Collaborative Filtering

  • Hyun Woo Kim;Hye Jin Yun;Kwihoon Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.273-285
    • /
    • 2024
  • 교육 분야에서 온라인 저지 시스템이 활발하게 활용됨에 따라 학습자 데이터를 활용하는 다양한 연구가 진행되고 있다. 본 연구에서는 학습자 데이터를 활용하여 학습자의 문제 선택을 지원할 수 있는 사용자 기반 협업 필터링 방식의 문제추천 기능을 제안한다. 온라인 저지 시스템에서 학습자의 문제 선택을 위한 지원은 그들의 향후 학습에 영향을 미치므로 교육의 효과성 제고를 위해 필요하다. 이를 위해 학습자의 문제풀이 성향과 유사한 학습자를 식별하고 그들의 문제풀이 이력을 활용한다. 제안 기능은 충북교육연구정보원에서 운영하는 알고리즘과 프로그래밍 관련 온라인 저지 사이트에 구현됐고, 서비스 유용성과 사용 편이성 측면에서 델파이 기법을 통한 전문가 검토를 수행했다. 또한 사이트 사용자 대상 시범 운영에서 바른코드 제출 비율을 분석한 결과 추천문제에 대해 제출한 경우가 전체 제출에 비해 16% 정도 높았고, 추천문제 사용자 대상 설문조사에서 '도움 된다' 응답은 78%였다. 시범 운영에서는 추천문제 선택과 사용자 피드백 관련 설문 응답 비율이 낮았으므로, 향후 연구과제로 제안 기능의 접근성 향상, 사용자 피드백 수집 및 학습자 데이터 분석 다각화 등을 제시했다.

실시간 행동인식 기반 아동 행동분석 서비스 시스템 개발 (Development of a Real-time Action Recognition-Based Child Behavior Analysis Service System)

  • 오치민;김선우;박정민;조인장;김재인;이칠우
    • 스마트미디어저널
    • /
    • 제13권2호
    • /
    • pp.68-84
    • /
    • 2024
  • 본 논문에서는 행동인식 기술을 기반으로 0세에서 2세까지의 아동을 대상으로 행동 발달 지표(활동성, 사회성, 위험성)를 파악하여 고도의 복지 서비스를 제공할 수 있는 시스템과 알고리즘에 관해 기술한다. 행동인식은 0세 영아의 눕기에서 부터 2세 유아의 점프까지 총 11개 행동을 대상으로 하였으며 광주·전남지역 어린이집 3개소에서 연구용으로 제공받은 실제 영상으로부터 직접 취득한 데이터를 학습에 사용하였다. 11개 행동에 대해 425개 클립 영상에서 1,867개 행동 데이터셋을 구축하여 학습한 결과 평균 97.4%의 인식정확도를 확인하였다. 또 실세계 적용을 위해 행동분석 장치인 엣지 비디오 분석기(Edge Video Analyzer, EVA)를 제작하였고 이 장치 위에 4채널 영상에서 최대 30명까지 실시간 행동인식이 가능한 영역별 랜덤 프레임 선택 기반 PoseC3D 알고리즘을 구현하였다. 개발된 시스템은 3곳의 어린이집에 설치되어 10명의 보육교사에 의해 1개월 간 실증테스트가 진행되었고 설문조사 결과 체감 정확도는 91점, 서비스 만족도는 94점으로 평가되었다.

환자움직임 감지를 위한 효율적인 하드웨어 및 소프트웨어 혼성 모드 영상처리시스템설계에 관한 연구 (A study on the design of an efficient hardware and software mixed-mode image processing system for detecting patient movement)

  • 정승민;정의성;김명환
    • 인터넷정보학회논문지
    • /
    • 제25권1호
    • /
    • pp.29-37
    • /
    • 2024
  • 본 논문에서는 환자와 같은 특정 객체의 움직임을 감지하고 추적하기 위한 효율적인 영상처리 시스템을 제안한다. 이진화된 차 영상에서 객체의 윤곽선추출을 위하여 기존 알고리즘대비 대비 정밀한 감지가 가능하고 혼성모드설계에 용이한 세선화 알고리즘을 적용하여 영역을 추출한다. 연산량이 많은 이진화와 세선화 단계를 RTL(Register Transfer Level) 기반으로 설계하여 논리회로 합성을 거쳐 최적화된 하드웨어 블록으로 대체된다. 설계된 이진화 및 세선화 블록은 표준 180n CMOS 라이브러리를 이용하여 논리회로로 합성한 후 시뮬레이션을 통하여 동작을 검증하였다. 소프트웨어기반의 성능비교를 위해 32bit FPGA 임베디드시스템 환경에서 640 × 360 해상도의 샘플 영상을 적용하여 이진 및 세선화 연산에 대한 성능분석도 실시하였다. 검증결과 혼성모드 설계가 이전의 소프트웨어로만 이루어지는 처리속도에서 이진 및 세선화 단계에서 93.8% 향상될 수 있음을 확인하였다. 제안된 객체인식을 위한 혼성모드 시스템은 인공지능 네트워크가 적용되지 않는 엣지 컴퓨팅 환경에서도 환자의 움직임을 효율적으로 감시할 수 있을 것으로 기대된다.

준지도 학습을 활용한 사용자 기반 소형 어선 충돌 경보 분류모델에대한 연구 (A Study on the User-Based Small Fishing Boat Collision Alarm Classification Model Using Semi-supervised Learning)

  • 석호준;심승;우정훈;조준래;정재룡;조득재;백종화
    • 한국항해항만학회지
    • /
    • 제47권6호
    • /
    • pp.358-366
    • /
    • 2023
  • 본 연구는 해양수산부의 '지능형 해상교통정보시스템' 서비스 중 '사고취약선박 모니터링 서비스'의 선박 충돌 경보를 개선하기 위한 것으로, 현재의 선박 충돌 경보는 대형 선박 위주의 데이터와 그 운항자에 기반한 설문조사 레이블을 가지고 지도 학습(SL)한 모델을 사용하고 있다. 이로 인해, 소형선박 데이터 및 운항자의 의견이 현재 충돌 지도학습 모델에 반영되지 않아, 소형선박 운항자가 느끼는 체감보다 먼 거리에서 경보가 제공되기 때문에 그 효과가 미비하다. 또한, 지도학습(SL) 방법은 레이블링 된 다수의 데이터가 필요하지만, 레이블링 과정에서 많은 자원과 시간이 필요하다. 본 논문은 이러한 한계를 극복하기 위해 준지도학습(SSL)의 알고리즘인 Label Propagation과 TabNet을 사용하여 레이블이 결정되지 않은 데이터를 활용하여 소형선박을 위한 충돌 경보의 분류 모델을 연구하였다. 충돌 경보의 분류 모델을 활용하여 소형선박 운항자를 대상으로 실해역 시험을 수행한 결과 운항자의 만족도가 증가하는 결과를 확인하였다.

다중연결 해양부유체의 모형시험 구조응답 예측정확도 향상을 위한 유전알고리즘을 이용한 센서배치 최적화 (Optimal Sensor Placement for Improved Prediction Accuracy of Structural Responses in Model Test of Multi-Linked Floating Offshore Systems Using Genetic Algorithms)

  • 심기찬;이강수
    • 한국전산구조공학회논문집
    • /
    • 제37권3호
    • /
    • pp.163-171
    • /
    • 2024
  • 본 논문에서는 다목적 구조물인 다중연결 해양부유체를 대상으로 변형 기반 모드 차수축소법을 적용하고 차수축소모델의 구조응답 예측 성능을 향상시키기 위해 유전 알고리즘 기반의 센서 배치 최적화를 수행하였다. 다중연결 해양부유체의 차수축소모델 생성에 필요한 변형 기반 모드 데이터를 얻기 위해 다양한 규칙파랑하중조건에 대한 유체-구조 연성 수치해석을 수행하고 변형 기반 모드의 직교성, 자기상관계수를 이용하여 주요 변형 기반 모드를 선정하였다. 다중연결 해양부유체의 경우 차수축소모델의 구조응답 예측 성능이 계측 및 예측 구조응답 위치에 따라 민감하기 때문에 유전 알고리즘 기반의 최적화를 수행하여 최적의 센서 배치를 도출하였다. 최적화 결과, 모든 센서 배치 조합에 대한 차수축소모델 생성 및 예측 성능 평가 대비 약 8배의 계산 비용을 절감하였으며, 예측 성능 평가 지표인 평균 제곱근 오차가 초기 센서 배치보다 84% 감소하였다. 또한, 다중연결 해양부유체 모형시험 결과를 이용하여 불규칙파랑하중에 대한 최적화된 센서 배치의 차수축소모델의 구조응답 예측 성능을 평가 및 검증하였다.

스테레오 비전 센서 기반 프리팹 강구조물 조립부 형상 품질 평가 (Dimensional Quality Assessment for Assembly Part of Prefabricated Steel Structures Using a Stereo Vision Sensor)

  • 김종혁;전해민
    • 한국전산구조공학회논문집
    • /
    • 제37권3호
    • /
    • pp.173-178
    • /
    • 2024
  • 본 논문에서는 스테레오 비전 센서를 이용한 프리팹 강구조물(PSS: Prefabricated Steel Structures)의 조립부 형상 품질 평가 기법을 소개한다. 스테레오 비전 센서를 통해 모형의 조립부 영상과 포인트 클라우드 데이터를 수집하였으며, 퍼지 기반 엣지 검출, 허프 변환 기반 원형의 볼트 홀 검출 등의 영상처리 알고리즘을 적용하여 조립부 영역의 볼트홀을 검출하였다. 영상 내 추출된 볼트홀 외곽선 위 세 점의 위치 정보에 대응되는 3차원 실세계 위치 정보를 깊이 영상으로부터 획득하였으며, 이를 기반으로 각 볼트홀의 3차원 중심 위치를 계산하였다. 통계적 기법 중 하나인 주성분 분석 알고리즘(PCA: Principal component analysis) 알고리즘을 적용함으로써 3차원 위치 정보를 대표하는 최적의 좌표축을 계산하였다. 이를 통해 센서의 설치 방향 및 위치에 따라 센서와 부재 간 평행이 아니더라도 안정적으로 볼트홀 간의 거리를 계측하도록 하였다. 각 볼트홀의 2차원 위치 정보를 기반으로 볼트홀의 순서를 정렬하였으며, 정렬된 볼트홀의 위치 정보를 바탕으로 인접한 볼트홀 간의 각 축의 거리 정보를 계산하여 조립부 볼트홀 위치 중심의 형상 품질을 분석하였다. 측정된 볼트홀 간의 거리 정보는 실제 도면의 거리 정보와의 절대오차와 상대오차를 계산하여 성능 비교를 진행하였으며, 중앙값 기준 1mm 내의 절대오차와 4% 이내의 상대오차의 계측 성능을 확인하였다.

볼록 껍질 알고리즘을 이용한 등부표 위치패턴 최적화 기간 연구 (A Study on the Optimization Period of Light Buoy Location Patterns Using the Convex Hull Algorithm)

  • 최원진;문범식;송재욱;김영진
    • 한국항해항만학회지
    • /
    • 제48권3호
    • /
    • pp.164-170
    • /
    • 2024
  • 등부표는 해상에 부유하는 구조물로, 해양 기상 등 외력에 의해 표류하여 위치가 고정되어 있지 않고 이동하므로 등부표의 유실 또는 위치 이탈을 감시하는 것이 필요하다. 이에 해양수산부는 등부표의 과거 위치 데이터를 기반으로 등부표별 위치패턴을 분석하여 등부표의 위치 이탈에 대한 경보를 제공하고자 한다. 하지만, 매 2년 주기로 실시되는 인양점검에 의해 등부표의 위치패턴이 변화하므로, 인양점검 후 새로운 위치패턴을 분석하여 위치를 감시하는 것이 필요하다. 본 연구에서는 볼록 껍질 알고리즘과 거리 기반 군집 알고리즘을 사용하여 다양한 기간 동안의 등부표 위치 데이터를 분석하였다. 또한, 등부표의 정확한 위치패턴 인식을 위한 최적의 데이터 수집 기간을 식별하였다. 연구 결과, 안정적인 위치패턴을 확립하는 최적의 데이터 수집기간은 9주이며, 위치 데이터의 약 89.8%를 설명할 수 있는 것으로 나타났다. 본 연구 결과는 위치패턴 기반 등부표 관리 기능을 향상하는 데 활용될 수 있으며, 효과적인 모니터링과 등부표 위치 이탈 여부의 조기 감지에 기여할 것으로 기대한다.