• 제목/요약/키워드: Algorithm optimization

검색결과 5,708건 처리시간 0.038초

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

Optimization of a Composite Laminated Structure by Network-Based Genetic Algorithm

  • Park, Jung-Sun;Song, Seok-Bong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1033-1038
    • /
    • 2002
  • Genetic alsorithm (GA) , compared to the gradient-based optimization, has advantages of convergence to a global optimized solution. The genetic algorithm requires so many number of analyses that may cause high computational cost for genetic search. This paper proposes a personal computer network programming based on TCP/IP protocol and client-server model using socket, to improve processing speed of the genetic algorithm for optimization of composite laminated structures. By distributed processing for the generated population, improvement in processing speed has been obtained. Consequently, usage of network-based genetic algorithm with the faster network communication speed will be a very valuable tool for the discrete optimization of large scale and complex structures requiring high computational cost.

삼각 패치 알고리듬을 이용한 복합 재료 구조물의 전체 최적화 (Global Optimization of Composite Structures Using Triangular Patch Algorithm)

  • 오승환;이병채
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.671-684
    • /
    • 2001
  • Several design problems of composite structures are studied via a global optimizer based on attraction regions. MSC/NASTRAN is adopted for static and eigenvalue analysis. The method of modified feasible direction in DOT is used for local optimization. Through the review of global optimization algorithms, the triangular patch algorithm is selected because the algorithm is known to be efficient, robust and powerful for general nonlinear optimization problems. For general applicability, various mechanical properties are considered as design objectives; strain energy, eigenvalue, weight, displacement, and buckling load. In all cases considered, the triangular patch algorithm results in a lot of optimum points and useful design patterns, that are not easy by local algorithms or conventional global algorithms can be determined.

하모닉 알고리즘을 활용한 슬래브 거푸집 디자인 최적화에 관한 실험적인 연구 (Experimental Study on Optimization of Slab Form Design Using Harmonic Search Algorithm)

  • 장인동;이종구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.185-186
    • /
    • 2018
  • The slabfrom, which is commonly used in construction sites, has drawbacks in that the workability of the workers is reduced due to their heavy weight. This study investigates the possibility of design optimization of euro form between structural stability and weight using harmonic search algorithm. The harmonic search algorithm is a metaheuristic optimization technique that obtains multiple optimal solution candidates through iterative. As a result of multiple attempts of optimization through the algorithm, it was possible to design the formwork which is structurally stable and light in weight than the existing formwork.

  • PDF

fmGA를 이용한 하수관거정비 최적화 모델 (Optimization Model for Sewer Rehabilitation Using Fast Messy Genetic Algorithm)

  • 류재나;기범준;박규홍;이차돈
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.145-154
    • /
    • 2004
  • A long-term sewer rehabilitation project consuming an enormous budget needs to be conducted systematically using an optimization skill. The optimal budgeting and ordering of priority for sewer rehabilitation projects are very important with respect to the effectiveness of investment. In this study, the sewer rehabilitation optimization model using fast-messy genetic algorithm is developed to suggest a schedule for optimal sewer rehabilitation in a subcatchment area by modifying the existing GOOSER$^{(R)}$ model having been developed using simple genetic algorithm. The sewer rehabilitation optimization model using fast-messy genetic algorithm can improve the speed converging to the optimal solution relative to GOOSER$^{(R)}$, suggesting that it is more advantageous to the sewer rehabilitation in a larger-scale subcatchment area than GOOSER.

An Improved PSO Algorithm for the Classification of Multiple Power Quality Disturbances

  • Zhao, Liquan;Long, Yan
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.116-126
    • /
    • 2019
  • In this paper, an improved one-against-one support vector machine algorithm is used to classify multiple power quality disturbances. To solve the problem of parameter selection, an improved particle swarm optimization algorithm is proposed to optimize the parameters of the support vector machine. By proposing a new inertia weight expression, the particle swarm optimization algorithm can effectively conduct a global search at the outset and effectively search locally later in a study, which improves the overall classification accuracy. The experimental results show that the improved particle swarm optimization method is more accurate than a grid search algorithm optimization and other improved particle swarm optimizations with regard to its classification of multiple power quality disturbances. Furthermore, the number of support vectors is reduced.

Optimization Method of Knapsack Problem Based on BPSO-SA in Logistics Distribution

  • Zhang, Yan;Wu, Tengyu;Ding, Xiaoyue
    • Journal of Information Processing Systems
    • /
    • 제18권5호
    • /
    • pp.665-676
    • /
    • 2022
  • In modern logistics, the effective use of the vehicle volume and loading capacity will reduce the logistic cost. Many heuristic algorithms can solve this knapsack problem, but lots of these algorithms have a drawback, that is, they often fall into locally optimal solutions. A fusion optimization method based on simulated annealing algorithm (SA) and binary particle swarm optimization algorithm (BPSO) is proposed in the paper. We establish a logistics knapsack model of the fusion optimization algorithm. Then, a new model of express logistics simulation system is used for comparing three algorithms. The experiment verifies the effectiveness of the algorithm proposed in this paper. The experimental results show that the use of BPSO-SA algorithm can improve the utilization rate and the load rate of logistics distribution vehicles. So, the number of vehicles used for distribution and the average driving distance will be reduced. The purposes of the logistics knapsack problem optimization are achieved.

케이블 돔 시스템의 형상 최적화 (Shape Optimization of the Cable Dome System)

  • 조남철;최승열;한상을
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.151-160
    • /
    • 2004
  • Genetic algorithm is the theory of grafting the principle of survival of the fittest in genetics on to the computer algorithm and it is used to solve the optimization problems, especially the shape and size optimization of the structure in Architectural problems. In the size optimization problem discrete variables are used, but series variables have to be used in the shape optimization problem because of the incongruenty. The purpose of this study is to obtain the optimum shape of cable domes by using the real coding genetic algorithm. Generally, the structural performance of the cable domes is influenced very sensitively by pre-stress, geometry and length of the mast because of its flexible characteristic. So, it is very important to decide the optimum shape to get maximum stiffness of cable domes. We use the model to verify the usefulness of this algorithm for shape optimization and analyze the roof system of Seoul Olympic Gymnastic Arena as analytical model of a practical structures. It is confirmed lastly that the optimum shape domes have more stiffness than initial shape ones.

  • PDF

시변 2상 최적화 및 이의 신경회로망 학습에의 응용 (Time-Varying Two-Phase Optimization and its Application to neural Network Learning)

  • 명현;김종환
    • 전자공학회논문지B
    • /
    • 제31B권7호
    • /
    • pp.179-189
    • /
    • 1994
  • A two-phase neural network finds exact feasible solutions for a constrained optimization programming problem. The time-varying programming neural network is a modified steepest-gradient algorithm which solves time-varying optimization problems. In this paper, we propose a time-varying two-phase optimization neural network which incorporates the merits of the two-phase neural network and the time-varying neural network. The proposed algorithm is applied to system identification and function approximation using a multi-layer perceptron. Particularly training of a multi-layer perceptrion is regarded as a time-varying optimization problem. Our algorithm can also be applied to the case where the weights are constrained. Simulation results prove the proposed algorithm is efficient for solving various optimization problems.

  • PDF

고체-유체 연성력 제어를 위한 진화적 최적설계 (Evolutionary Optimization Design Technique for Control of Solid-Fluid Coupled Force)

  • 김현수;이영신
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.503-506
    • /
    • 2005
  • In this study, optimization design technique for control of solid-fluid coupled force (sloshing) using evolutionary method is suggested. Artificial neural networks(ANN) and genetic algorithm(GA) is employed as evolutionary optimization method. The ANN is used to analysis of the sloshing and the genetic algorithm is adopted as an optimization algorithm. In the creation of ANN learning data, the design of experiments is adopted to higher performance of the ANN learning using minimum learning data and ALE(Arbitrary Lagrangian Eulerian) numerical method is used to obtain the sloshing analysis results. The proposed optimization technique is applied to the minimization of sloshing of the water in the tank lorry with baffles under 2 second lane change.

  • PDF