• Title/Summary/Keyword: Algorithm optimization

Search Result 5,708, Processing Time 0.032 seconds

Particle Swarm Assisted Genetic Algorithm for the Optimal Design of Flexbeam Sections

  • Dhadwal, Manoj Kumar;Lim, Kyu Baek;Jung, Sung Nam;Kim, Tae Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.341-349
    • /
    • 2013
  • This paper considers the optimum design of flexbeam cross-sections for a full-scale bearingless helicopter rotor, using an efficient hybrid optimization algorithm based on particle swarm optimization, and an improved genetic algorithm, with an effective constraint handling scheme for constrained nonlinear optimization. The basic operators of the genetic algorithm, of crossover and mutation, are revisited, and a new rank-based multi-parent crossover operator is utilized. The rank-based crossover operator simultaneously enhances both the local, and the global exploration. The benchmark results demonstrate remarkable improvements, in terms of efficiency and robustness, as compared to other state-of-the-art algorithms. The developed algorithm is adopted for two baseline flexbeam section designs, and optimum cross-section configurations are obtained with less function evaluations, and less computation time.

Three-dimensional Topology Optimization using the CATO Algorithm

  • LEE, Sang Jin;BAE, Jung Eun
    • Architectural research
    • /
    • v.11 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • An application of the constrained adaptive topology optimization (CATO) algorithm is described for three-dimensional topology optimization of engineering structures. The enhanced assumed strain lower order solid finite element (FE) is used to evaluate the values of objective and constraint functions required in optimization process. The strain energy (SE) terms such as elastic and modal SEs are employed as the objective function to be minimized and the initial volume of structures is introduced as the constraint function. The SIMP model is adopted to facilitate the material redistribution and also to produce clearer and more distinct structural topologies. The linearly weighted objective function is introduced to consider both static and dynamic characteristics of structures. Several numerical tests are tackled and it is used to investigate the performance of the proposed three-dimensional topology optimization process. From numerical results, it is found to be that the CATO algorithm is easy to implement and extremely applicable to produce the reasonable optimum topologies for three dimensional optimization problems.

Design of steel frames by an enhanced moth-flame optimization algorithm

  • Gholizadeh, Saeed;Davoudi, Hamed;Fattahi, Fayegh
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.129-140
    • /
    • 2017
  • Structural optimization is one of the popular and active research areas in the field of structural engineering. In the present study, the newly developed moth-flame optimization (MFO) algorithm and its enhanced version termed as enhanced moth-flame optimization (EMFO) are employed to implement the optimization process of planar and 3D steel frame structures with discrete design variables. The main inspiration of this optimizer is the navigation method of moths in nature called transverse orientation. A number of benchmark steel frame optimization problems are solved by the MFO and EMFO algorithms and the results are compared with those of other meta-heuristics. The obtained numerical results indicate that the proposed EMFO algorithm possesses better computational performance compared with other existing meta-heuristics.

Goal-Pareto based NSGA-II Algorithm for Multiobjective Optimization (다목적 최적화를 위한 Goal-Pareto 기반의 NSGA-II 알고리즘)

  • Park, Soon-Kyu;Lee, Su-Bok;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1079-1085
    • /
    • 2007
  • This Paper Proposes a new optimization algorithm named by GBNSGA-II(Goal-pareto Based Non-dominated Sorting Genetic Algorithm-II) which uses Goal Programming to find non-dominated solutions in NSGA-II. Although the conventional NSGA is very popular to solve multiobjective optimization problem, its high computational complexity, lack of elitism and difficulty of selecting sharing parameter have been considered as problems to be overcome. To overcome these problems, NSGA-II has been introduced as the alternative for multiobjective optimization algorithm preventing aforementioned defects arising in the conventional NSGA. Together with advantageous features of NSGA-II, this paper proposes rather effective optimization algorithm formulated by purposely combining NSGA-II algorithm with GP (Goal Programming) subject to satisfying multiple objectives as possible as it can. By conducting computer simulations, the superiority of the proposed GBNSGA-II algorithm will be verified in the aspects of the effectiveness on optimization process in presence of a priori constrained goals and its fast converging capability.

Static Compliance Analysis & Multi-Objective Optimization of Machine Tool Structures Using Genetic Algorithm(I) (유전자 알고리듬을 이용한 공자기계구조물의 정강성 해석 및 다목적 함수 최적화(I))

  • 이영우;성활경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.443-448
    • /
    • 2000
  • In this paper, multiphase optimization of machine structure is presented. The goal of first step is to obtain (i) light weight, (ii) rigidity statically. In this step, multiple optimization problem with two objective functions is treated using Pareto Genetic Algorithm. Where two objective functions are weight of the structure, and static compliance. The method is applied to a new machine structure design.

  • PDF

A New Approach to System Identification Using Hybrid Genetic Algorithm

  • Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.107.6-107
    • /
    • 2001
  • Genetic alogorithm(GA) is a well-known global optimization algorithm. However, as the searching bounds grow wider., performance of local optimization deteriorates. In this paper, we propose a hybrid algorithm which integrates the gradient algorithm and GA so as to reinforce the performance of local optimization. We apply this algorithm to the system identification of second order RLC circuit. Identification results show that the proposed algorithm gets the better and robust performance to find the exact values of RLC elements.

  • PDF

An Improved Cat Swarm Optimization Algorithm Based on Opposition-Based Learning and Cauchy Operator for Clustering

  • Kumar, Yugal;Sahoo, Gadadhar
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.1000-1013
    • /
    • 2017
  • Clustering is a NP-hard problem that is used to find the relationship between patterns in a given set of patterns. It is an unsupervised technique that is applied to obtain the optimal cluster centers, especially in partitioned based clustering algorithms. On the other hand, cat swarm optimization (CSO) is a new meta-heuristic algorithm that has been applied to solve various optimization problems and it provides better results in comparison to other similar types of algorithms. However, this algorithm suffers from diversity and local optima problems. To overcome these problems, we are proposing an improved version of the CSO algorithm by using opposition-based learning and the Cauchy mutation operator. We applied the opposition-based learning method to enhance the diversity of the CSO algorithm and we used the Cauchy mutation operator to prevent the CSO algorithm from trapping in local optima. The performance of our proposed algorithm was tested with several artificial and real datasets and compared with existing methods like K-means, particle swarm optimization, and CSO. The experimental results show the applicability of our proposed method.

A Random Deflected Subgradient Algorithm for Energy-Efficient Real-time Multicast in Wireless Networks

  • Tan, Guoping;Liu, Jianjun;Li, Yueheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4864-4882
    • /
    • 2016
  • In this work, we consider the optimization problem of minimizing energy consumption for real-time multicast over wireless multi-hop networks. Previously, a distributed primal-dual subgradient algorithm was used for finding a solution to the optimization problem. However, the traditional subgradient algorithms have drawbacks in terms of i) sensitivity to iteration parameters; ii) need for saving previous iteration results for computing the optimization results at the current iteration. To overcome these drawbacks, using a joint network coding and scheduling optimization framework, we propose a novel distributed primal-dual Random Deflected Subgradient (RDS) algorithm for solving the optimization problem. Furthermore, we derive the corresponding recursive formulas for the proposed RDS algorithm, which are useful for practical applications. In comparison with the traditional subgradient algorithms, the illustrated performance results show that the proposed RDS algorithm can achieve an improved optimal solution. Moreover, the proposed algorithm is stable and robust against the choice of parameter values used in the algorithm.

Optimization of Side Airbag Release Algorithm by Genetic Algorithm (유전알고리듬을 이용한 측면 에어백 전개 알고리듬의 최적화)

  • 김권희;홍철기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.45-54
    • /
    • 1998
  • For proper release of side airbags, the onset of crash should be detected first. After crash detection, the algorithm has to make a decision whether the side airbag deployment is necessary. If the deployment is necessary, proper timing has to be provided for the maximum protection of driver or passenger. The side airbag release algorithm should be robust against the statistical deviations which are inherent to experimental crash test data. Deterministic optimization algorithms cannot be used for the side aribag release algorithm since the objective function cannot be expressed in a closed form. From this background, genetic algorithm has been used for the optimization. The optimization requires moderate amount of computation and gives satisfactory results.

  • PDF

A Hybrid Genetic Ant Colony Optimization Algorithm with an Embedded Cloud Model for Continuous Optimization

  • Wang, Peng;Bai, Jiyun;Meng, Jun
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1169-1182
    • /
    • 2020
  • The ant colony optimization (ACO) algorithm is a classical metaheuristic optimization algorithm. However, the conventional ACO was liable to trap in the local minimum and has an inherent slow rate of convergence. In this work, we propose a novel combinatorial ACO algorithm (CG-ACO) to alleviate these limitations. The genetic algorithm and the cloud model were embedded into the ACO to find better initial solutions and the optimal parameters. In the experiment section, we compared CG-ACO with the state-of-the-art methods and discussed the parameter stability of CG-ACO. The experiment results showed that the CG-ACO achieved better performance than ACOR, simple genetic algorithm (SGA), CQPSO and CAFSA and was more likely to reach the global optimal solution.