• 제목/요약/키워드: Algorithm Based

검색결과 27,845건 처리시간 0.047초

Adaptive Noise Canceler에 적합한 가변 스텝 사이즈 고속 웨이블렛 적응알고리즘 (Fast Wavelet Adaptive Algorithm Based on Variable Step Size for Adaptive Noise Canceler)

  • 이채욱;이재균
    • 한국멀티미디어학회논문지
    • /
    • 제8권8호
    • /
    • pp.1051-1056
    • /
    • 2005
  • 적응신호처리 분야에서 LMS 알고리즘은 수식이 간단하고, 적은 계산량으로 인해 널리 사용되고 있지만, 시간영역의 적응 알고리즘은 입력신호의 고유치 분포폭이 넓게 분포할 때는 수렴속도가 느려지는 단점이 있다. 또한 알고리즘의 성능을 좌우하는 고정된 적응상수를 적절하게 선택해야만 알고리즘이 수렴할 수 있다. 이런 문제점을 개선하기 위하여 본 논문에서는 시간영역의 적응알고리즘을 변환영역인 웨이블렛 변환에서 적응알고리즘을 적용한다. 그리고 안정되고 빠른 수렴을 위해 고정된 적응상수를 오차신호의 순시치 절대값에 비례하여 각 반복구간마다 변화시키는 가변스텝사이즈를 갖는 웨이블렛 기반 적응알고리즘을 제안, 적응 잡음제거기에 적용하여 기존의 알고리즘과 비교하여 그 성능이 우수함을 입증하였다.

  • PDF

퍼지 로직 동조기를 이용한 PID 제어기의 이득 조정 (Tuning gains of a PID controller using fuzzy logic-based tuners)

  • 이명원;권순학;이달해
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.184-187
    • /
    • 1996
  • In this paper, an algorithm for tuning gains of a PID controller is proposed. The proposed algorithm is composed of two stages. The first is a stage for Lyapunov function-based initial stabilization of an overall system and rough tuning gains of the PID controller. The other is that for fine tuning gains of the PID controller. All tunings are performed by using the well-known fuzzy logic-based tuner. The computer simulations are performed to show the validity of the proposed algorithm and results are presented.

  • PDF

Parallel Synthesis Algorithm for Layer-based Computer-generated Holograms Using Sparse-field Localization

  • Park, Jongha;Hahn, Joonku;Kim, Hwi
    • Current Optics and Photonics
    • /
    • 제5권6호
    • /
    • pp.672-679
    • /
    • 2021
  • We propose a high-speed layer-based algorithm for synthesizing computer-generated holograms (CGHs), featuring sparsity-based image segmentation and computational parallelism. The sparsity-based image segmentation of layer-based three-dimensional scenes leads to considerable improvement in the efficiency of CGH computation. The efficiency enhancement of the proposed algorithm is ascribed to the field localization of the fast Fourier transform (FFT), and the consequent reduction of FFT computational complexity.

구조 최적화를 위한 특징형상 재설계 알고리즘 (A Feature-based Reconstruction Algorithm for Structural Optimization)

  • 박상근
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.1-9
    • /
    • 2014
  • This paper examines feature-based reconstruction algorithm using feature-based modeling and based on topology optimization technology, which aims to achieve a minimal volume weight and to satisfy user-defined constraints such as stress, deformation related conditions. The finite element model after topology optimization allows us to remove some region of a solid model for predefined volume requirement. The stress or deformation distribution resulted from finite element analysis enables us to add some material to the solid model for a robust structure. For this purpose, we propose a feature-based redesign algorithm which inserts negative features to the solid model for material removal and positive features for material addition, and we introduce a bisection method which searches an optimal structure by iteratively applying the feature-based redesign algorithm. Several examples are considered to illustrate the proposed algorithms and to demonstrate the effectiveness of the present approach.

A GGQS-based hybrid algorithm for inter-cloud time-critical event dissemination

  • Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1259-1269
    • /
    • 2012
  • Cloud computing has rapidly become a new infrastructure for organizations to reduce their capital cost in IT investment and to develop planetary-scale distributed applications. One of the fundamental challenges in geographically distributed clouds is to provide efficient algorithms for supporting inter-cloud data management and dissemination. In this paper, we propose a geographic group quorum system (GGQS)-based hybrid algorithm for improving the interoperability of inter-cloud in time-critical event dissemination service, such as computing policy updating, message sharing, event notification and so forth. The proposed algorithm first organizes these distributed clouds into a geographic group quorum overlay to support a constant event dissemination latency. Then it uses a hybrid protocol that combines geographic group-based broad-cast with quorum-based multicast. Our numerical results show that the GGQS-based hybrid algorithm improves the efficiency as compared with Chord-based, Plume an GQS-based algorithms.

Test Scheduling of NoC-Based SoCs Using Multiple Test Clocks

  • Ahn, Jin-Ho;Kang, Sung-Ho
    • ETRI Journal
    • /
    • 제28권4호
    • /
    • pp.475-485
    • /
    • 2006
  • Network-on-chip (NoC) is an emerging design paradigm intended to cope with future systems-on-chips (SoCs) containing numerous built-in cores. Since NoCs have some outstanding features regarding design complexity, timing, scalability, power dissipation and so on, widespread interest in this novel paradigm is likely to grow. The test strategy is a significant factor in the practicality and feasibility of NoC-based SoCs. Among the existing test issues for NoC-based SoCs, test access mechanism architecture and test scheduling particularly dominate the overall test performance. In this paper, we propose an efficient NoC-based SoC test scheduling algorithm based on a rectangle packing approach used for current SoC tests. In order to adopt the rectangle packing solution, we designed specific methods and configurations for testing NoC-based SoCs, such as test packet routing, test pattern generation, and absorption. Furthermore, we extended and improved the proposed algorithm using multiple test clocks. Experimental results using some ITC'02 benchmark circuits show that the proposed algorithm can reduce the overall test time by up to 55%, and 20% on average compared with previous works. In addition, the computation time of the algorithm is less than one second in most cases. Consequently, we expect the proposed scheduling algorithm to be a promising and competitive method for testing NoC-based SoCs.

  • PDF

A Study on High Resolution Ranging Algorithm for The UWB Indoor Channel

  • Lee, Chong-Hyun
    • 조명전기설비학회논문지
    • /
    • 제21권4호
    • /
    • pp.96-103
    • /
    • 2007
  • In this paper, we present a novel and numerically efficient algorithm for high resolution TOA(Time Of Arrival) estimation under indoor radio propagation channels. The proposed algorithm is not dependent on the structure of receivers, i.e, it can be used with either coherent or non-coherent receivers. The TOA estimation algorithm is based on a high resolution frequency estimation algorithm of Minimum-norm. The efficiency of the proposed algorithm relies on numerical analysis techniques in computing signal or noise subspaces. The algorithm is based on the two step procedures, one for transforming input data to frequency domain data and the other for estimating the unknown TOA using the proposed efficient algorithm. The efficiency in number of operations over other algorithms is presented. The performance of the proposed algorithm is investigated by means of computer simulations.. Throughout the analytic and computer simulation results, we show that the proposed algorithm exhibits superior performance in estimating TOA estimation with limited computational cost.

Highly Efficient and Precise DOA Estimation Algorithm

  • Yang, Xiaobo
    • Journal of Information Processing Systems
    • /
    • 제18권3호
    • /
    • pp.293-301
    • /
    • 2022
  • Direction of arrival (DOA) estimation of space signals is a basic problem in array signal processing. DOA estimation based on the multiple signal classification (MUSIC) algorithm can theoretically overcome the Rayleigh limit and achieve super resolution. However, owing to its inadequate real-time performance and accuracy in practical engineering applications, its applications are limited. To address this problem, in this study, a DOA estimation algorithm with high parallelism and precision based on an analysis of the characteristics of complex matrix eigenvalue decomposition and the coordinate rotation digital computer (CORDIC) algorithm is proposed. For parallel and single precision, floating-point numbers are used to construct an orthogonal identity matrix. Thus, the efficiency and accuracy of the algorithm are guaranteed. Furthermore, the accuracy and computation of the fixed-point algorithm, double-precision floating-point algorithm, and proposed algorithm are compared. Without increasing complexity, the proposed algorithm can achieve remarkably higher accuracy and efficiency than the fixed-point algorithm and double-precision floating-point calculations, respectively.

Urea-SCR 분사시스템의 DeNOx 저감 성능 향상과 NH3 슬립저감을 위한 모델 기반 제어알고리즘 개발 및 구현 (The Development and Implementation of Model-based Control Algorithm of Urea-SCR Dosing System for Improving De-NOx Performance and Reducing NH3-slip)

  • 정수진;김우승;박정권;이호길;오세두
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.95-105
    • /
    • 2012
  • The selective catalytic reduction (SCR) system is a highly-effective aftertreatment device for NOx reduction of diesel engines. Generally, the ammonia ($NH_3$) was generated from reaction mechanism of SCR in the SCR system using the liquid urea as the reluctant. Therefore, the precise urea dosing control is a very important key for NOx and $NH_3$ slip reduction in the SCR system. This paper investigated NOx and $NH_3$ emission characteristics of urea-SCR dosing system based on model-based control algorithm in order to reduce NOx. In the map-based control algorithm, target amount of urea solution was determined by mass flow rate of exhaust gas obtained from engine rpm, torque and $O_2$ for feed-back control NOx concentration should be measured by NOx sensor. Moreover, this algorithm can not estimate $NH_3$ absorbed on the catalyst. Hence, the urea injection can be too rich or too lean. In this study, the model-based control algorithm was developed and evaluated on the numerical model describing physical and chemical phenomena in SCR system. One channel thermo-fluid model coupled with finely tuned chemical reaction model was applied to this control algorithm. The vehicle test was carried out by using map-based and model-based control algorithms in the NEDC mode in order to evaluate the performance of the model based control algorithm.

A Simplified Synchronous Reference Frame for Indirect Current Controlled Three-level Inverter-based Shunt Active Power Filters

  • Hoon, Yap;Radzi, Mohd Amran Mohd;Hassan, Mohd Khair;Mailah, Nashiren Farzilah;Wahab, Noor Izzri Abdul
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1964-1980
    • /
    • 2016
  • This paper presents a new simplified harmonics extraction algorithm based on the synchronous reference frame (SRF) for an indirect current controlled (ICC) three-level neutral point diode clamped (NPC) inverter-based shunt active power filter (SAPF). The shunt APF is widely accepted as one of the most effective current harmonics mitigation tools due to its superior adaptability in dynamic state conditions. In its controller, the SRF algorithm which is derived based on the direct-quadrature (DQ) theory has played a significant role as a harmonics extraction algorithm due to its simple implementation features. However, it suffers from significant delays due to its dependency on a numerical filter and unnecessary computation workloads. Moreover, the algorithm is mostly implemented for the direct current controlled (DCC) based SAPF which operates based on a non-sinusoidal reference current. This degrades the mitigation performances since the DCC based operation does not possess exact information on the actual source current which suffers from switching ripples problems. Therefore, three major improvements are introduced which include the development of a mathematical based fundamental component identifier to replace the numerical filter, the removal of redundant features, and the generation of a sinusoidal reference current. The proposed algorithm is developed and evaluated in MATLAB / Simulink. A laboratory prototype utilizing a TMS320F28335 digital signal processor (DSP) is also implemented to validate effectiveness of the proposed algorithm. Both simulation and experimental results are presented. They show significant improvements in terms of total harmonic distortion (THD) and dynamic response when compared to a conventional SRF algorithm.