• Title/Summary/Keyword: Algorithm #3

검색결과 15,404건 처리시간 0.047초

철재 케이싱이 설치된 시추공에서도 적용가능한 공곡검층기 K-DEV (K-DEV: A Borehole Deviation Logging Probe Applicable to Steel-cased Holes)

  • 송윤호;조영욱;김성도;이태종;김명선;박인화;이희순
    • 지구물리와물리탐사
    • /
    • 제25권4호
    • /
    • pp.167-176
    • /
    • 2022
  • 심지층 특성화 기술 확보에 필요한 자체 기기 개발의 일환으로 철재 케이싱이 설치된 시추공에도 적용가능한 공곡검층기 K-DEV를 설계하고 500 m 깊이 용 시작품을 개발하였다. K-DEV는 디지털 출력을 제공하고 이미 성능이 입증된 센서들을 장착하며, 기존에 국내에서 사용하는 윈치시스템과 호환성을 갖추도록 설계되었다. K-DEV 시작품은 외경 48.3 mm 비자성 스테인레스강 하우징을 채용했으며 실험실 내에서 20 MPa까지의 방수 시험, 그리고 1 km 깊이 시추공에 삽입하여 내구성 시험을 거쳤다. 시작품을 이용해 600 m 깊이까지의 하향 및 상향 연속 검층을 수행하여 작동의 안정성 및 자료의 반복성을 확인하였다. 철재 케이싱이 설치되어 있는 시추공내에서 방위각 결정에 필수적인 자이로 센서로 K-DEV 시작품에서는 고정밀도 MEMS 자이로스코프를 채택하였다. 여기에 가속도계 자료와 각속도 자료를 융합하고 무향 칼만 필터링(Unscented Kalman Filtering)을 통해 최적화 함으로써 정확한 궤적 추적을 수행하는 알고리듬을 고안하였다. 시험 시추공에서 K-DEV 시작품과 상업적 기기와의 비교 검층을 통해 서로 매우 근접한 결과를 얻었다. 특히, MEMS 자이로 센서의 시간에 따른 drift에 의한 오차 누적 문제는 검층 전 후에 정두에서 동일한 방향으로 위치한 정지 상태에서 측정한 자료로부터 각속도를 보정함으로써 해소될 수 있으며, 철재 케이싱이 설치된 시추공에서의 공곡검층이 나공 상태에서의 결과와 거의 동일한 궤적 추정 결과를 제공함을 확인할 수 있었다. 이러한 시작품 적용 결과로서 K-DEV 개발의 방법론, 시작품의 안정성 및 자료의 신뢰성을 확보하였다고 판단된다.

계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가 (Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions)

  • 정유란;이진영;김미애;손수진
    • 한국농림기상학회지
    • /
    • 제25권2호
    • /
    • pp.80-98
    • /
    • 2023
  • 본 연구에서는 계절내-계절(Subseasonal to seasonal, S2S) 기후예측의 주별 예측 성능을 개선하기 위해서 딥러닝 기반의 후보정(post processing) 기술을 개발하였다. 그 첫 단계로, 일 최고, 최저기온과 일 강수를 목표 변수로, 자료의 특성과 분포에 적합한 자료 변환 및 특성 공학 기법을 규명하고자 하였다. 먼저, 6개 개별 기후모델의 S2S 예측 자료를 딥러닝 모델에 입력하기 위한 훈련자료로 변환하고, 이로부터 다중모델앙상블(Multi-Model Ensemble, MME) 기반 훈련자료를 구축하였다. 참값(label)으로는 ECMWF의 ERA5 재분석 자료를 사용하였다. 자료 변환 알고리즘은 최고 및 최저 차이를 계산하여 입력자료의 범위를 변형시키는 MinMax 및 MaxAbs 변환, 표준편차를 이용하는 Standard 변환 및 분위수를 지정하여 변형하는 Robust와 Quantile 변환으로 구성된 전처리 파이프라인을 구축하였으며, 변환된 훈련자료와 예측 변수와의 상관관계를 계산하여 순위에 따라 훈련자료의 특성을 선택하는 특성 선택 기법을 추가하였다. 본 연구는 U-Net 모델에 TimeDistributed wrapper를 모든 합성곱 층(convolutional layer)에 적용하여 활용하였다. 5개 알고리즘으로부터 변환된 6개 개별 기후모델 및 MME S2S 훈련자료(일 최고 및 최저기온, 강수)에 훈련 모델을 적용한 결과와 훈련 모델을 적용하지 않은 결과를 ERA5와의 공간상관계수(spatial Pattern Correlation Coefficient)를 계산하고 그 개선율인 기술 점수(skill score)를 평가한 결과, 일 강수의 PCC 기술 점수는 Standard 및 Robust 변환으로 처리된 것에서 전체 예측선행(1~4주)에 대해 모두 높았고, 일 최고 및 최저기온에서는 예측 선행시간 3~4주에서만 높게 나타났다. 또한, 일 강수에서 특성 선택에 따른 훈련자료의 차원 감소가 예측 성능 변화에 영향을 미치지 않는 것으로 나타났다. 일 최고 및 최저기온의 경우에는 특성 선택에 의한 훈련자료의 특성 정보 감소가 오히려 예측 성능을 저하시킬 수 있는 것으로 확인되었으며, 원시자료에서 예측성이 높은 1~2주 기온 예측 개선을 위한 적합한 전처리 변환 알고리즘이나 특성 선택을 찾을 수 없었다. 후속 연구에서는 원시 예측 성능이 강수에 비해 높으나 딥러닝 훈련 모델에 의한 후보정 효과가 미미한 예측 선행 1~2주 기온 예측의 저조 원인에 대해 탐색하고, 다양한 딥러닝 훈련 모델로의 적용 및 초매개변수 조정 등 학습 과정의 최적화를 통해 S2S 기후 예측 성능을 개선하고자 한다.

영상처리기법을 이용한 다중 변위응답 측정 알고리즘의 검증 (Verification of Multi-point Displacement Response Measurement Algorithm Using Image Processing Technique)

  • 김성완;김남식
    • 대한토목학회논문집
    • /
    • 제30권3A호
    • /
    • pp.297-307
    • /
    • 2010
  • 최근 토목, 건축 구조물의 유지관리 기술에 대한 관심이 커지고 있으며 구조물의 성능저하 및 노후화 등으로 구조적 안전성의 검토가 요구되는 구조물의 수가 급증하고 있는 실정이다. 그리고 구조물의 노후화 및 부재의 균열 등으로 인하여 강성이 저하되면 구조물의 동특성에 변화가 나타나게 되며 구조물의 실제 거동상태에서 동특성을 분석하여 손상부위와 손상정도를 정확히 판단하는 것은 중요한 문제이다. 구조물 모니터링에 사용되는 대표적 계측장비가 동적계측기이다. 기존의 동적계측기는 측정 센서와 장비를 연결하는 케이블 길이가 길어질 경우 신뢰할 수 있는 데이터를 얻기 힘들고 각 센서와 계측기를 1:1로 연결하는 방식을 취하고 있어 비경제적이다. 따라서 센서를 부착하지 않고 원거리에서 진동을 측정하는 방법이 필요하다. 구조물의 진동을 계측하기 위하여 적용 가능한 비접촉식 방법으로는 레이저의 도플러효과, GPS를 이용하는 방법 및 영상처리기법 등이 대표적이다. 레이저의 도플러효과를 이용하는 방법은 정확도가 상대적으로 높지만 비경제적이며, GPS를 이용하는 방법은 장비가 고가이고 신호 자체의 오차와 데이터 취득속도의 제약이 있는 단점이 있다. 그러나 영상신호를 이용하는 방법은 간편하고 경제적이며 접근이 어려운 구조물의 진동 및 동특성 추출에 적합하다. 기존에도 센서를 대신하여 카메라의 영상신호를 이용하는 연구가 수행되기도 하였으나, 기존의 방법은 구조물에 부착된 표적의 한 지점을 기록한 후 영상처리기법을 이용하여 진동을 측정하는 방법으로서 측정 대상이 비교적 국한적일 수 있다. 그러므로 본 연구에서는 영상처리기법을 이용하여 구조물의 다중 변위응답을 측정할 수 있는 방법의 타당성을 검증하기 위하여 진동대 실험 및 현장재하실험을 수행하였다.

Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시 (Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images)

  • 이시현;강유진;성태준;임정호
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.979-995
    • /
    • 2023
  • 산불은 예측이 어려운 재해이기 때문에 실시간 모니터링을 통해 빠르게 대응하는 것이 중요하며, 정지 궤도 위성 영상은 광역을 짧은 시간 간격으로 모니터링할 수 있어 산불 탐지 분야에 활발히 이용되고 있다. 기존의 위성 영상 기반 산불 탐지 알고리즘은 밝기 온도의 통계량 분석을 통한 임계값 기반으로 이상치를 탐지하는 방향으로 진행되어 왔다. 그러나 강도가 약한 산불을 탐지하기 어렵거나, 적절한 임계값 설정의 어려움으로 일반화 성능이 저하되는 한계점이 있어 최근에는 기계학습을 이용한 산불 탐지 알고리즘들이 제시되고 있다. 현재까지는 random forest, VanillaConvolutional neural network (CNN), U-net 구조 등의 비교적 간단한 기법이 적용되고 있다. 따라서, 본 연구에서는 정지궤도 위성인 Advanced Himawari Imager를 이용하여 동아시아와 호주를 대상으로 State of the Art (SOTA)딥러닝 기법을 적용한 산불 탐지 알고리즘을 개발하고자 하였다. SOTA 모델은 EfficientNet과 lion optimizer를 적용하여 개발하고, Vanilla CNN 구조를 사용한 모델과 산불 탐지 결과를 비교하였다. EfficientNet은 동아시아와 호주에서 0.88 및 0.83의 F1-score를 기록함으로써 CNN (동아시아: 0.83, 호주: 0.78)에 비해 뛰어난 성능을 입증하였다. EfficientNet에 불균형 문제 해결을 위한 weighted loss, equal sampling, image augmentation 기법 적용 시, 동아시아와 호주에서 각각 0.92와 0.84의 F1-score를 기록함으로써 적용 전(동아시아: 0.88, 호주: 0.83)에 비하여 성능이 향상되었음을 확인하였다. 본 연구를 통하여 제시된 SOTA 딥러닝 기법의 산불 탐지에의 적용 가능성과 딥러닝 모델의 성능 향상을 위해 고려해야 할 방향은 향후 산불탐지 분야에 대한 딥러닝 적용에 도움이 될 것으로 기대된다.

오차 계산 방식에 따른 사료용 벼 품종의 품종모수 추정치 불확도 비교 (Comparison between Uncertainties of Cultivar Parameter Estimates Obtained Using Error Calculation Methods for Forage Rice Cultivars)

  • 조영상;현신우;김광수
    • 한국농림기상학회지
    • /
    • 제25권3호
    • /
    • pp.129-141
    • /
    • 2023
  • 작물 모형은 작물의 유전적 특성을 나타내는 품종모수를 요구하며, 품종모수는 작물의 개별 품종별로 추정되어야 한다. 품종모수의 추정에는 고품질의 많은 생육 자료가 요구되지만, 자료의 생산에 상당한 비용이 필요하다. 비교적 낮은 품질의 가용성이 높은 자료를 활용하는 대신, 대량의 랜덤 모수를 생성하고 이를 평가하여 품종모수를 추정할 수 있다. 본 연구에서는 SIMPLE 작물 모델의 불확도를 최소화하기 위해 품종모수 추정 방식을 비교하고, 두 앙상블 방식과 대한 비교를 하였다. 모수 추정을 위한 Metropolis-Hastings (MH) 알고리즘에 대한 목적함수로 로그 가능도(log-likelihood: LL)와 generic composite similarity measure (GCSM)를 사용하였다. 또한 품종모수의 평균값을 사용한 예측(Epm)과 개별 모수들로부터 얻어진 추정값의 평균값(Eem)의 일치도를 분석하여 앙상블 방식에 따른 불확도 변화를 파악하였다. 국내에서 재배되는 사료용 벼 품종인 조우 벼와 영우 벼를 대상으로 품종모수를 추정하였다. 2013년, 2014년, 2016년에 대한 수원, 전주, 나주, 익산에 위치한 실험포장에서 얻은 수량 관측 자료를 사용하였다. 또한 2016년부터 2018년까지 수원에서 보고된 별도의 수량 관측 자료를 사용하였다. 목적함수에 따라 추정된 품종모수의 분포에 차이가 있었다. LL을 통해 얻은 품종모수는 GCSM으로 얻은 품종모수보다 좁은 범위에 분포하였다. 두 가지 앙상블 접근법은 통계적으로 유의한 차이가 나타나지 않음을 확인하였다. GCSM의 상대적으로 높은 불확도는 수용확률을 조정하여 낮출 수 있다고 사료되고, Epm의 결과는 기존과 다른 앙상블 방식을 통해 적은 연산을 통해 불확도를 낮출 수 있음을 보인다.

참조 수문관측소 구성 조건에 따른 LSTM 모형 홍수위예측 정확도 검토 사례 연구 (Case study on flood water level prediction accuracy of LSTM model according to condition of reference hydrological station combination)

  • 이승호;김수영;정재원;윤광석
    • 한국수자원학회논문집
    • /
    • 제56권12호
    • /
    • pp.981-992
    • /
    • 2023
  • 최근 전세계적인 기후변화의 영향으로 강우가 집중되고 강우강도가 강해짐에 따라 홍수피해의 규모를 증가시키고 있다. 과거에 관측되지 않았던 규모의 비가 내리기도 하고, 기록되지 않았던 장기간의 장마가 발생하기도 한다. 이러한 피해들은 아세안 국가에도 집중되고 있으며, 태풍 및 집중호우로 인해 침수의 빈번한 발생과 함께 많은 사람들이 영향을 받고 있다. 특히, 인도네시아 찌따룸강 상류 유역에 위치한 반둥 지역은 분지 형태의 지형학적 특성을 가지고 있어서 홍수에 매우 취약한 실정이다. 이에 공적개발원조(ODA)를 통해 2017년에 찌따룸강 상류(Upper Citarum River) 유역에 대하여 홍수예경보시스템을 구축되었고, 현재 운영중에 있다. 그럼에도 불구하고, 찌따룸강 상류 (Upper Citarum River) 지역은 홍수발생시 인명 및 재산피해의 위험에 여전히 노출되어 있어 신속하고 정확한 홍수예경보의 실시를 통해 피해를 경감시키는 노력이 지속적으로 필요한 실정이다. 따라서 본 연구에서는 찌따룸강 상류의 Dayeuh Kolot 지점을 목표관측소로 하고, 강우관측소 4개소와 수위관측소 1개소의 10분 단위 수문자료를 수집하여 인공지능 기반의 하천홍수위예측모형을 개발하였다. 6개 관측소의 2017년 1월부터 2021년 1월까지의 10분 단위 수문관측자료를 활용하여 선행예보시간 0.5, 1, 2, 3, 4, 5, 6시간에 대해서 학습, 검증, 시험을 수행하였으며 인공지능알고리즘으로는 LSTM을 적용하였다. 연구결과 모든 선행예보시간에 대해 모형적합도 및 오차에서 좋은 결과를 나타냈으며, 학습자료 구축조건에 따른 예측정확도를 검토한 결과 참조관측소가 적은 경우에도 모든 관측소를 활용하는 경우와 유사하게 예측정확도를 확보하는 것으로 나타나 효율적인 인공지능 기반 모형 구축에 활용될 수 있을 것으로 기대된다.

딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석 (Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm)

  • 허재원;이창희;서두천;오재홍;이창노;한유경
    • 대한원격탐사학회지
    • /
    • 제40권4호
    • /
    • pp.387-396
    • /
    • 2024
  • 대부분의 고해상도 위성영상은 rational polynomial coefficients (RPC) 정보를 제공하여 지상좌표와 영상좌표 간 변환을 수행한다. 그러나 초기 RPC에는 기하학적 오차가 존재하여 ground control points (GCPs)와의 정합을 통해 보정을 수행하여야 한다. GCP chip은 항공정사영상에서 추출한 높이 정보가 포함된 작은 영상 패치(patch)이다. 많은 선행연구에서는 영역 기반 정합 기법을 사용하여 고해상도 위성영상과 GCP chip 간 정합을 수행하였다. 계절적 차이나 변화된 지역이 존재하는 영상에서는 화소값에 의존하는 정합이 어렵기 때문에 윤곽 정보를 추출하여 정합을 수행하기도 한다. 그러나 일반적으로 사용하는 canny 기법으로 정합에 용이한 윤곽을 추출하기 위해서는 위성영상의 분광 특성에 적절한 임계치를 설정해주어야 하는 문제가 존재한다. 따라서 본 연구에서는 위성영상의 지역별 특성에 둔감한 윤곽 정보를 활용하여 RPC 보정을 위한 정합을 수행하고자 한다. 이를 위해 딥러닝 기반 윤곽 정보 추출 네트워크인 pixel difference network (PiDiNet)를 활용하여 위성영상과 GCP chip의 윤곽맵(edge map)을 각각 생성하였다. 그 후 생성된 윤곽맵을 normalized cross-correlation과 relative edge cross-correlation의 입력데이터로 대체하여 영역 기반의 정합을 수행하였다. 마지막으로 RPC 보정에 필요한 변환모델 계수를 도출하기 위하여 data snooping 기법을 반복적으로 적용하여 참정합쌍을 추출하였다. 오정합쌍을 제거한 참정합쌍에 대해 root mean square error (RMSE)를 도출하고 기존에 사용하던 상관관계 기법과 결과를 정성적으로 비교하였다. 실험 결과, PiDiNet은 약 0.3~0.9 화소의 RMSE 값 분포를 보였으나 canny 기법에 비해 두꺼운 윤곽을 나타내어 일부 영상에서 미세하게 정확도가 저하되는 것을 확인하였다. 그러나 위성영상 내 특징적인 윤곽을 일관적으로 나타냄으로써 정합이 어려운 지역에서도 정합이 잘 수행되는 것을 확인하였다. 본 연구를 통해 윤곽 기반 정합 기법의 강인성을 개선하여 다양한 지역에서의 정합을 수행할 수 있을 것으로 예상된다.

텍스트 마이닝을 활용한 신문사에 따른 내용 및 논조 차이점 분석 (A Study on Differences of Contents and Tones of Arguments among Newspapers Using Text Mining Analysis)

  • 감미아;송민
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.53-77
    • /
    • 2012
  • 본 연구는 경향신문, 한겨레, 동아일보 세 개의 신문기사가 가지고 있는 내용 및 논조에 어떠한 차이가 있는지를 객관적인 데이터를 통해 제시하고자 시행되었다. 본 연구는 텍스트 마이닝 기법을 활용하여 신문기사의 키워드 단순빈도 분석과 Clustering, Classification 결과를 분석하여 제시하였으며, 경제, 문화 국제, 사회, 정치 및 사설 분야에서의 신문사 간 차이점을 분석하고자 하였다. 신문기사의 문단을 분석단위로 하여 각 신문사의 특성을 파악하였고, 키워드 네트워크로 키워드들 간의 관계를 시각화하여 신문사별 특성을 객관적으로 볼 수 있도록 제시하였다. 신문기사의 수집은 신문기사 데이터베이스 시스템인 KINDS에서 2008년부터 2012년까지 해당 주제로 주제어 검색을 하여 총 3,026개의 수집을 하였다. 수집된 신문기사들은 불용어 제거와 형태소 분석을 위해 Java로 구현된 Lucene Korean 모듈을 이용하여 자연어 처리를 하였다. 신문기사의 내용 및 논조를 파악하기 위해 경향신문, 한겨레, 동아일보가 정해진 기간 내에 일어난 특정 사건에 대해 언급하는 단어의 빈도 상위 10위를 제시하여 분석하였고, 키워드들 간 코사인 유사도를 분석하여 네트워크 지도를 만들었으며 단어들의 네트워크를 통해 Clustering 결과를 분석하였다. 신문사들마다의 논조를 확인하기 위해 Supervised Learning 기법을 활용하여 각각의 논조에 대해 분류하였으며, 마지막으로는 분류 성능 평가를 위해 정확률과 재현률, F-value를 측정하여 제시하였다. 본 연구를 통해 문화 전반, 경제 전반, 정치분야의 통합진보당 이슈에 대한 신문기사들에 전반적인 내용과 논조에 차이를 보이고 있음을 알 수 있었고, 사회분야의 4대강 사업에 대한 긍정-부정 논조에 차이가 있음을 발견할 수 있었다. 본 연구는 지금까지 연구되어왔던 한글 신문기사의 코딩 및 담화분석 방법에서 벗어나, 텍스트 마이닝 기법을 활용하여 다량의 데이터를 분석하였음에 의미가 있다. 향후 지속적인 연구를 통해 분류 성능을 보다 높인다면, 사람들이 뉴스를 접할 때 그 뉴스의 특정 논조 성향에 대해 우선적으로 파악하여 객관성을 유지한 채 정보에 접근할 수 있도록 도와주는 신뢰성 있는 툴을 만들 수 있을 것이라 기대한다.

R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템 (An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis)

  • 이충석;이석주;최병구
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.79-96
    • /
    • 2012
  • 기술의 발전과 융합이 빠르게 이루어지고 있는 오늘날 유망기술을 어떻게 파악하여, 다양한 후보군들 중에서 최적의 R&D 대상을 어떻게 선정할 것인가에 대한 문제는 주요한 경영의사결정문제 중 하나로 부상하고 있다. 본 연구에서는 이러한 R&D 기술 선정 의사결정을 지원할 수 있는 새로운 지능형 의사결정지원시스템을 제안한다. 본 연구의 의사결정지원시스템은 크게 3가지 모듈로 구성되는데, 우선 첫 번째 모듈인 '기술가치 평가' 모듈에서는 기업이 관심을 갖고 있는 분야의 특허들을 분석하여 유망기술 파악에 요구되는 다양한 차원의 기술가치 평가지수 값들을 산출하는 작업이 이루어진다. 이를 통해, 현재 시점에서의 각 기술의 가치가 다양한 차원에서 평가가 이루어지고 나면, 두 번째 모듈인 '미래기술가치 예측' 모듈에서 이들의 시간 흐름에 따른 변화를 학습한 인공지능 모형을 토대로 각 후보기술들이 미래 시점에 어떤 가치지수값을 갖게 될 것인지 예측값을 산출하게 된다. 마지막 세 번째 모듈인 '최적 R&D 대상기술 선정 지원' 모듈에서는 앞서 두 번째 모듈에서 산출된 각 차원별 예상 가치지수값들을 적절히 가중합하여 기술의 종합적인 미래가치 예측값을 산출하여 의사결정자에게 제공하는 기능을 수행한다. 이를 통해 의사결정자가 자사에 적합한 최적의 R&D 대상기술을 선정할 수 있도록 하였다. 본 연구에서는 제안된 시스템의 적용 가능성을 검증하기 위해, 10년치 특허데이터에 인공신경망 기법을 적용하여 실제 기술가치 예측모형을 구축해 보고, 그 효과를 살펴본다.

사례 기반 지능형 수출통제 시스템 : 설계와 평가 (Export Control System based on Case Based Reasoning: Design and Evaluation)

  • 홍원의;김의현;조신희;김산성;이문용;신동훈
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.109-131
    • /
    • 2014
  • 최근 전 세계적인 원전 설비의 수요 증가로 원자력 전략물자 취급의 중요성이 높아지는 가운데, 국외 수출을 위한 원전 관련 물품 및 기술의 신청 또한 급증하는 추세이다. 전략물자 사전판정 업무는 통상 원자력 물자 관리에 해박한 전문가의 경험 및 지식에 근거하여 수행되어 왔지만, 급증하는 수요에 상응하는 전문 인력의 공급이 부족한 실정이다. 이러한 문제를 극복하기 위하여, 본 연구진은 전략물자 수출 통제를 위한 사례 기반 지능형 수출 통제 시스템을 설계 및 개발하였다. 이 시스템은 현장 전문가의 전담 업무이던 신규 사례에 대한 전략물자 사전판정 과정 업무의 주요 맥락을 자동화 하여 전문가 및 관계 기관이 감당해야 할 업무 부담을 줄이며, 빠르고 정확한 판정을 돕는 의사결정 지원 시스템의 역할을 맡는다. 개발된 시스템은 사례 기반 추론 (Case Based Reasoning) 방식에 기반을 두어 설계되었는데, 이는 과거 사례의 특성을 활용하여 신규 사례의 해법을 유추하는 추론 방법이다. 본 연구에서는 자연어로 작성된 전자문서 처리에 널리 사용되는 텍스트 마이닝 분석 기법을 원자력 분야에 특화된 형태로 응용하여 전략물자 수출통제 시스템을 설계하였다. 시스템 설계의 근거로 선행 연구에서 제안된 반자동식 핵심어 추출 방안의 성능을 보다 엄밀히 검증하였고, 추출된 핵심어로 신규 사례와 유사한 과거 사례를 추출하는 알고리즘을 제안하였다. 제안된 방안은 텍스트 마이닝 분야의 TF-IDF 방법 및 코사인 유사도 점수를 활용한 결과(${\alpha}$)와 원자력 분야에서 통용되는 개념적 지식을 계통으로 분류하여 도출한 결과(${\beta}$)를 조합하여 최종 결과 (${\gamma}$) 를 생성하게 된다. 세부 요소 기술의 성능 검증은 임상 데이터를 활용한 실험 및 실무 전문가의 의견수렴을 통해 이루어졌다. 개발된 시스템은 사전판정 전문 인력을 다수 양성하는 데 드는 비용을 절감하는 데 일조할 것이며, 지식서비스 산업의 의미 있는 응용 사례로서 관련 산업의 성장에 기여할 수 있을 것으로 보인다.