• Title/Summary/Keyword: Algal toxin

Search Result 23, Processing Time 0.014 seconds

Molecular probe for identification of cysts of resting cyst of PSP-producer Alexandrium tamarense (Dinophyceae) (분자생물학적 방법을 이용하여 마비성 패류 독소를 생산하는 알렉산드륨 타마렌스 시스트 탐색)

  • Cho, Eun-Seob
    • Journal of Life Science
    • /
    • v.13 no.2
    • /
    • pp.163-167
    • /
    • 2003
  • Identification of species within the toxin-producing genus Alexandrium is vital for biotoxin monitoring and mitigation decisions regarding shellfish industry. In particular, the discrimination of resting cysts of only A. tamarense from that of Alexandrium spp. is considerable important to fundamentally monitor and predict this species before vegetative cells occur in the nature. Fluorescent cTAM-F1 DNA probe was responsible to not only binding the activity of the vegetative cells in A. tamarense, but also to the resting cysts, which was treated with methanol after fixation and stained by primuline on the surface The location of fluorescence in cultured vegetative cells and resting cysts was almost at tile bottom of the nucleus. The optimal incubation temperature and time using in situ hybridization were 50-$54^{\circ}C$ and 40-60 min, respectively, to penetrate the DNA probe into cell.

Characteristics of Harmful Cyanobacteria Occurrence and Toxin Residual in Agricultural Reservoirs of Southern Gyeonggi (경기남부권 농업용 저수지의 유해 남세균 발생 및 독소물질 잔류 특성)

  • Kim Minju;Kim Young-Kee
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Algal blooms occur seasonally in the eutrophicated rivers or reservoirs, and some harmful cyanobacteria species produce toxic substances, which are directly or indirectly harmful to the ecosystem and terrestrial animals. So, the monitoring and control of harmful cyanobacteria occurrence and toxins residual in the aquasystem are important to preserve the water environment and secure public health. In this study, the four harmful cyanobacteria occurrences and toxic substance concentrations of two agricultural reservoirs in the southern part of Gyeonggi Province were investigated from August to October 2022. Among four harmful cyanobacteria (Microcystis sp., Anabaena sp., Oscillatoria sp., Aphanizomenon sp.), three kinds of cyanobacteria except Oscillatoria sp. were observed, and Microcystis sp. was the dominant cyanobacteria except for Anabaena sp. dominant result of a sample collected on October at reservoir B. The cell density of cyanobacteria was influenced by season and weather due to the length of daytime and concentrations of organic carbon and nitrogen. Three kinds of microcystin and anatoxin-a were quantitatively analyzed as total (in the cell body and water) and extracellular (in water) concentrations. The maximum total concentrations of anatoxin-a, microcystin-LR, microcystin-RR, and microcystin-YR were 0.1291 ㎍/L, 0.2776 ㎍/L, 0.3721 ㎍/L, and 0.0306 ㎍/L, respectively, in reservoir A and 0.3274 ㎍/L, 0.1495 ㎍/L, 0.2037 ㎍/L, and 0.0153 ㎍/L, respectively, in reservoir B.

Effects of Sediment and Cyanobacterium Microcystis aeruginosa on the Feeding Behavior of Omnivores Gold Fish Carassius auratus (잡식어 붕어의 섭식활동에 퇴적물 및 독성 남조 Microcystis aeruginosa의 영향)

  • Kim, Baik-Ho;Kim, Keun-Hee;Kim, Yong-Jae;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.212-220
    • /
    • 2010
  • Effects of sediment and toxic cyanobacterium Microcystis aeruginosa on feeding behaviors of an omnivorous fish, gold fish (Carassius auratus) were examined in laboratory and in situ mesocosm. Laboratory feeding experiments were performed in small aquaria (7 L) with cyanobacterial blooms (mainly M. aeruginosa) under the condition of sediments and no-sediments, and toxic (NIES-298) and non-toxic M. aeruginosa (NIES-101). In situ feeding experiments were conducted at the shore of eutrophic lake (Lake Ilgam, Seoul) in the mid-July, 2005. Results showed that fish introduction decreased the concentration of Chlorophyll-a (Chl-a) at higher rate in no sediment-containing aquaria. In contrast, there was a drastic increase of Chl-a in the sedimentcontaining aquaria. Fish effectively removed the M. aeruginosa cells without algal toxin (microcystin). Fish also selectively removed the large size Chl-a (>$50{\mu}m$), although all kinds of nutrients were increased after fish introduction, especially ammonia. Our results indicate that the strategic introduction of domestic omnivores Carassius auratus, to control cyanobacterial bloom in eutrophic lake will negatively play in the water quality improvement via a sediment disturbance and a density-dependent digestion.