• Title/Summary/Keyword: Algal growth

Search Result 407, Processing Time 0.027 seconds

Maximizing Biomass Productivity and $CO_2$ Biofixation of Microalga, Scenedesmus sp. by Using Sodium Hydroxide

  • Nayak, Manoranjan;Rath, Swagat S.;Thirunavoukkarasu, Manikkannan;Panda, Prasanna K.;Mishra, Barada K.;Mohanty, Rama C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1260-1268
    • /
    • 2013
  • A series of experiments were carried out with three native strains of microalgae to measure growth rates, biomass, and lipid productivities. Scenedesmus sp. IMMTCC-6 had better biomass growth rate and higher lipid production. The growth, lipid accumulation, and carbon dioxide ($CO_2$) consumption rate of Scenedesmus sp. IMMTCC-6 were tested under different NaOH concentrations in modified BBM. The algal strain showed the maximum specific growth rate (0.474/day), biomass productivity (110.9 mg $l^{-1}d^{-1}$), and $CO_2$ consumption rate (208.4 mg $l^{-1}d^{-1}$) with an NaOH concentration of 0.005 M on the $8^{th}$ day of cultivation. These values were 2.03-, 6.89-, and 6.88-fold more than the algal cultures grown in control conditions (having no NaOH and $CO_2$). The $CO_2$ fixing efficiency of the microalga with other alternative carbon sources like $Na_2CO_3$ and $NaHCO_3$ was also investigated and compared. The optimized experimental parameters at shake-flask scale were implemented for scaling up the process in a self-engineered photobioreactor. A significant increase in lipid accumulation (14.23% to 31.74%) by the algal strain from the logarithmic to stationary phases was obtained. The algal lipids were mainly composed of $C_{16}/C_{18}$ fatty acids, and are desirable for biodiesel production. The study suggests that microalga Scenedesmus sp. IMMTCC-6 is an efficient strain for biodiesel production and $CO_2$ biofixation using stripping solution of NaOH in a cyclic process.

Relationship among Inflow Volume, Water Quality and Algal Growth in the Daecheong Lake (대청호 유입유량 변동과 수질 및 조류증식의 관계)

  • Cheon, Se-Uk;Lee, Jea-An;Lee, Jay J.;Yoo, Yung-Bok;Bang, Kyu-Chul;Lee, Yeoul-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.342-348
    • /
    • 2006
  • Changes in water quality and algal growth according to the differences in the inflow volume were investigated in the Daecheong Lake from 1998 to 2001. Until year 2000, inflow volume considerably depended on the rainfall throughout the basin. However, the correlation was low since 2001 when water storage in the upstream Yongdam Lake was started. According to inflow volume-TP relationship analyses, significant correlation was found at up- and middle-stream sites, excluding down-stream site of the Daechong Lake. For chlorophyll-a, correlation was found with flow volume at all sites except for Choo-So. In a dry year, although nutrients loads were relatively lower than those in rainy years, there were higher concentrations of chlorophyll-a and massive bloom of Microcystis. Limiting factors for algal growth seems to be not the volume of nutrients load but retention time and physical disturbance of the water body influenced by inflow volume. Thus, in the Daecheong lake, it would be more important to focus on the management of eutrophication in dry years than in rainy ones.

Limiting Nutrients of Cochlodinium polyklikoides Red Tide in Saryang Island Coast by Algal Growth Potential (AGP) Assay (조류성장잠재력 시험에 의한 사량도 연안 Cochlodinium polykrikoides 적조의 제한영양염)

  • KIM Hyung Chul;KIM Dong Myung;LEE Dae In;PARK Chung Kil;KIM Hak Gyoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.457-464
    • /
    • 2001
  • Algal growth potential (AGP) assay using Cochlodinium polykrikoides was conducted in Saryang Island coast where C. polykrikoides red tide occurred annually from July to October 1998. The effects of macro- and micro-nutrients on the growth of C. polykrikoides were specifically evaluated by the algal assay method. Two different types of growth response of C. polykikoides for the addition of nutrients were clearly obseued. For both before and after C. polykrikoides occurrence, the growth of C. polykikoides was significantly stimulated by the addition of either nitrate or ammonium of $50{\mu]M$ with phosphate of $5{\mu}M$. The addition of a single nutrient had no clear effect on the growth of C. polyhikoides and the addition of trace metals, vitamins, and EDTA etc. did not stimulate the algal growth, also. This result indicates that both N and P potentially limited the growth of C. polyhikoides in this period. However, during a bloom of C. polyhikoides, the growth was unlikely to be stimulated by the addition of both macro- and micro-nutrients. At that time the nutrient concentration of Saryang Island coast was $24.33{\mu}M$ for ammonium, $1.61{\mu}M$ for phosphate, and $0.58{\mu}M$ for nitrate, respectively. The concentrations of nutrients increased, on average, 8.2-fold for ammonium and 4.8-fold for phosphate, decreased 3.3-fold for nitrate compared to both before and after the red tide. This result shows that the growth of C. polykikoides was not limited by the nutrients during the bloom in September. Therefore, our results suggest that the C. polykrikoides red tide may outbreak especially when the water is fertilized due to the increased N and P.

  • PDF

Three-dimensional Algal Dynamics Modeling Study in Lake Euiam Based on Limited Monitoring Data (제한된 측정 자료 기반 의암호 3차원 조류 예측 모델링 연구)

  • Choi, Jungkyu;Min, Joong-Hyuk;Kim, Deok-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.181-195
    • /
    • 2015
  • Algal blooms in lakes are one of major environmental issues in Korea. A three-dimensional, hydrodynamic and water quality model was developed and tested in Lake Euiam to assess the performance and limitations of numerical modeling with multiple algal groups using field data commonly collected for algal management. In this study, EFDC was adopted as the basic model framework. Simulated vertical profiles of water temperature, dissolved oxygen and nutrients monitored at five water quality monitoring stations from March to October 2013, which are closely related to algal dynamics simulation, showed good agreement with those of observed data. The overall spatio-temporal variations of three algal groups were reasonably simulated against the chlorophyll-a levels of those estimated from the limited monitoring data (chlorophyll-a level and cell numbers of algal species) with the RMSEs ranging from 2.6 to $17.5mg/m^3$. Also, note that $PO_4-P$ level in the water column was a key limiting factor controlling the growth of three algal groups during most of simulation period. However, the algal modeling results were not fully attainable to the levels of observation during short periods of time showing abrupt increase in algae throughout the lake. In particular, the green algae/cyanobacteria and diatom simulations were underestimated in late June to early July and early October, respectively. The results shows that better understanding of internal algal processes, neglected in most algal modeling studies, is necessary to predict the sudden algal blooms more accurately because the concentrations of external $PO_4-P$ and specific algal groups originated from the tributaries (mainly, dam water releases) during the periods were too low to fully capture the sharp rise of internal algal levels. In this respect, this study suggests that future modeling efforts should be focused on the quantification of internal cycling processes including vertical movement of algal species with respect to changes in environmental conditions to enhance the modeling performance on complex algal dynamics.

Study on the Modelling of Algal Dynamics in Lake Paldang Using Artificial Neural Networks (인공신경망을 이용한 팔당호의 조류발생 모델 연구)

  • Park, Hae-Kyung;Kim, Eun-Kyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • Artificial neural networks were used for time series modelling of algal dynamics of whole year and by season at the Paldang dam station (confluence area). The modelling was based on comprehensive weekly water quality data from 1997 to 2004 at the Paldang dam station. The results of validation of seasonal models showed that the timing and magnitude of the observed chlorophyll a concentration was predicted better, compared with the ANN model for whole year. Internal weightings of the inputs in trained neural networks were obtained by sensitivity analysis for identification of the primary driving mechanisms in the system dynamics. pH, COD, TP determined most the dynamics of chlorophyll a, although these inputs were not the real driving variable for algal growth. Short-term prediction models that perform one or two weeks ahead predictions of chlorophyll a concentration were designed for the application of Harmful Algal Alert System in Lake Paldang. Short-term-ahead ANN models showed the possibilities of application of Harmful Algal Alert System after increasing ANN model's performance.

Inhibitory Effect of Microcystis aeruginosa (Cyanophyceae) Growth by Plants in vitro (식물체를 이용한 조류증식억제 효과)

  • Jheong, Weon-Hwa;Byeon, Myeong-Seop;Jun, Sun-Ok;Lim, Byung-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.136-144
    • /
    • 2000
  • M. aeruginosa isolated from Lake Paldang was cultured in CB medium, and then each wet plants put into the cultured medium at a rate of 0.5 g and 2.5 g wet wt/l. There was slight inhibition by the input of cattail and iris of each 0.5 g wet wt/l cultured medium, but showed no reduction in algal growth in other flasks. Among the applied plants, ginkgo, pine needles, big cone pine, waterreed and water chestnut had an effect on inhibition of algal growth at the input of 2.5 g wet wt/l. Plants which were dried for 3 days at $50^{\circ}C$ introduced into the testing flask for 10days cultured at dose rates of 2.5 g/l. When chlorophyll a concentration was remarkably high as $802.6\;{\mu}g/l$ after five days, there was noticeably less chlorophyll compared with control at a rate of 98% by big cone pine, 96% by ginkgo, 95% by pine needles and 86% by rice straw, respectively. To examine the effect of plant extracts on algal growth, big cone pine and water chestnut were put to the amount of 1.25 g liquid extracts/l. Chlorophyll a concentration and cell density decreased to the extent of average 43% as compared with the beginning of experiment, but when concentration of chlorophyll a increased a most high, the inhibition of algal growth by liquid extracts did not affect at all. When a quantity of plant equivalent to 2.5 g liquid extracts/l inhibited the growth of algae by 95% after nine days.

  • PDF

Luxurious Phosphorus and Phosphorus Limitation for Epiphytic and Planktonic Algal Growth in Reed Zones of Lake Biwa

  • Osamu, Mitamura;Choi, Jun-Kil
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.554-562
    • /
    • 2008
  • To evaluate the limitation for epiphytic and planktonic algal growth, acid extractable inorganic phosphorus (AP), implying the luxury uptake phosphorus, was measured in five reed zones of Lake Biwa. The AP in epiphytic substances was 0.7 to 1.4 mg P surface stem $m^{-2}$ in summer and 1.2 to 2.8 mg P $m^{-2}$ in winter. On the other hand, the amount in planktonic substances was 1.4 to 5.7 mg P m -3 and 0.8 to 5.4 mg P $m^{-3}$ in both seasons. Contribution of AP in the epiphytic and planktonic phosphorus was 23 to 31% and 8 to 27% in summer, and 17 to 22% and 9 to 17% in winter. It suggests that in summer both epiphytic and planktonic algae had been luxuriously taken up phosphate into cells. The weight ratios of C : N : P were averaged 79 : 20 : 1 for the epiphytic substances and 81 : 12 : 1 for the particulate substances. On the other hand, the ratios without the luxurious phosphorus were 93 : 24 : 1 and 103 : 15 : 1, showing much higher values than the Redfield ratio. High ratio in the epiphytic substances indicates that the phosphorus is the limiting parameter, rather than nitrogen, regulating the growth of epiphytic algal populations.

Isolation of an Algal Growth-enhancer Polysaccharide from the Chlorophyta Monostroma nitidum

  • Cho, Ji-Young;Luyen Hai Quoc;Khan Mohammed N.A.;Shin, Hyun-Woung;Park, Nam-Gyu;Hong, Yong-Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.3
    • /
    • pp.115-117
    • /
    • 2006
  • A micro algal growth-enhancing polysaccharide compound was isolated from the green alga Monostroma nitidum using water extraction, molecular fractionation, a DEAE-cellulose column, and fast protein liquid chromatography using a Superose-12 column. The yield of the compound from the seaweed powder was 8.3$\times$l0$^{-3}$%. At 2 mg/mL concentration, the polysaccharide enhanced Tetraselmis suecica cell growth in f/2 medium by approximately 160%.

Optimization of Algal Photobioreactors Using Flashing Lights

  • Park, Kyong-Hee;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.186-190
    • /
    • 2000
  • It has been reported that flashing light enhances microalgal biomass productivity and overall photosynthetic efficiency. The algal growth kinetics and oxygen production rates under flashing light with various flashing frequencies (5Hz-37 kHz) were compared with those under equivalent continuous light in photobioreactors. A positive flashing light effect was observed with flashing frequencies over 1kHz. The oxygen production rate under conditions of flashing light was slightly higher than that under continuius ligth. The cells under the hight, particularly at higher cell concentrations. When 37kHz flashing light was applied to an LED-based photobioreactor, the concentration was higher than that obtained under continuous light by about 20%. Flashing light may be a reasonable solution to overcome mutual shading, particularly in high-density algal cultures.

  • PDF

Application of Algal Growth Potential Test (AGPT) on the Water Quality of the Chinyang Reservoir and the Nam River (진양호와 남강의 수질에 대한 Algal Growth Potential Test (AGPT) 적용)

  • Lee, Ok-Hee;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.57-65
    • /
    • 2003
  • The algal growth potential test (AGPT) bioassay were conducted to assess the water quality and fertility in the Chinyang Reservoir and the lower part of the Nam River from August 2000 to July 2001, The AGPT value of the Chinyang Reservoir ranged from 0 to 23.4 mg dw $1^{-1}$, while 79% of the algae cultivation have not grown. The AGPT value was in proportion to phosphorus concentration of the water, and it was less when chlorophyll-a was high. This value was higher in the middle and lower layers than in the upper layer, and in the inflow part where the water is shallower than in the lacustrine. The AGPT value has increased in the whole reservoir in August${\sim}$September when the water volume is high. In contrast, the AGPT value in the Nam River varied greatly compared to that of the reservoir, and ranged from 0 to 252.0 mg dw $1^{-1}$ and 65% of the algae cultivation have grown. The value was less than 10 mg dw $1^{-1}$ in the upstream, over the point where the treated wastewater discharged. It was 57 mg dw $1^{-1}$ on the average in the downstream, except in March and July when the discharged water influenced greatly, exceeding the hypertrophic condition. The result of AGPT shows the differences in the time and space on the reservoir and the streams. The AGPT value has increased in July${\sim}$September, and in December in the inflow part of the reservoir; in March and August${\sim}$December in the lower part; and in January, May, and November in the streams. AGPT is useful not only in defining the influence of the limiting nutrients on the algal growth, but also in evaluating the nutrients fertility in the inland water.