• Title/Summary/Keyword: Algal growth

Search Result 411, Processing Time 0.029 seconds

Development of a Filamentous Green Algal Community in the Littoral Zone of Lake Biwa: a Mini-review (Biwa호 연안대에서 사상성 녹조류 군집의 발달)

  • Kentaro, Nozaki
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.368-372
    • /
    • 2004
  • The development of a benthic filamentous green algal community formed by Spiro gyra sp. in early summer has been observed in the littoral zones in the north basin of Lake Biwa since the 1980s. The development of a Spirogyra sp. community may have an effect on the increase in the biomass of the benthic algal community in early summer and on the alterations in seasonal fluctuation patterns of the biomass. In this mini-review, the causes underlying the development of the Spirogyra sp. community are discussed on the basis of studies in the seasonal fluctuations of benthic algal communities in littoral stony zones carried out in 1963-1964, 1995-1996 and 2000-2001, especially those focusing on the nutrient concentration $(NO_3^--N)$. $NO_3^--N$ concentrations in June were higher than $100{\mu}g\;L^{-1}$ in 1995 and 2000 in contrast to a concentration in June 1964 of only $20{\mu}g\;L^{-1}$. These results show that $NO_3^--N$concentrations throughout in 1963-1964 period were considerably lower than those in 1995-1996 and 2000-2001, suggesting that the $NO_3^--N$concentration may have served as a limiting factor on Spirogyra sp. growth in 1963. $NO_3^--N$ concentrations in the pelagic zone in the north basin of Lake Biwa have clearly increased from the 1950s under the impact of economic growth and the increasing population in the watershed. The development of the Spirogyra sp. community seems to be the result of a heady increase in the nutrient supply from human activities.

Analysis of influence on water quality and harmful algal blooms due to weir gate control in the Nakdong River, Geum River, and Yeongsan River (낙동강, 금강 및 영산강 가동보 운영이 수질 및 녹조현상에 미치는 영향 분석)

  • Seo, Dongil;Kim, Jaeyoung;Kim, Jinsoo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.877-887
    • /
    • 2020
  • A 3-Dimensional hydrodynamic and water quality model was applied to evaluate the effects of weir gate operations on water quality and harmful algal bloom (HAB) occurrences at selected locations in the Nakdong River, Geum River, and Yeongsan River. For the Geum River and Yeongsan River, when the gates are left open, annual and summer Chl-a and HABs were decreased at upstream locations, Sejong Weir and Seungchon Weir, but summer average concentrations of Chl-a and HABs were increased at downstream locations, Baekje Weir and Juksan Weir. For the open scenario, the reduced hydraulic residence time in the upper stream areas of the Geum River and Yeongsan River would allow less available time for nutrient consumption that would result in higher dissolved inorganic phosphorus concentrations followed by higher algal growth in the downstream areas. However, in the case of the Nakdong River, both annual and summer Chl-a and HABs were increased in all locations for the open scenario. This condition seems to be resulted in due to increased light availability by reduced water depths. Changes in Chl-a and HABs occurrences due to the water gate control in the study sites are different due to differences in physical, chemical, and biological conditions in each location.

Top-down Fish Biomanipulation Experiments on Algal Removal Effects (조류제거 효과에 대한 Top-down 어류 조작실험)

  • Lee, Sang-Jae;Lee, Jae-Yon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.431-438
    • /
    • 2007
  • This study was to test algal removal efficiency by top-down fish biomanipulation experiments in the laboratory during Agust${\sim}$September 2000. We selected eight candidate fishes for the biomanipulation. We set up the experiments of eight fish-treatment tanks (3${\sim}$6 fishes) with initial chlorophyll-${\alpha}$ concentrations (CHL-${\alpha}$) of $100{\sim}120{\mu}g\;L^{-1}$ and one control tank including no fish with the same initial CHL-${\alpha}$. All tanks were maintained water quality of dissolved oxygen $(5.3{\sim}8.2mg\;L^{-1})$ and pH $(7.4{\sim}8.1)$ in the tests. During the biomanipulation, DO and pH in the treatments were lower than those of the control, while conductivity increased gradually in the treatments. Biomanipulation experiments showed that CHL-${\alpha}$ increased 13% and 0% (mean values of 8 fishes) in the controls and treatments, respectively. These results indicate that algal growth was maintained in the control and fish treatments, but the rate of CHL-${\alpha}$ in the treatments was lower than that of the control. The removal rates of bluegreens algae decreased 32% in the control, and 20% in treatments (mean values of 8 fishes) respectively, In other words, bluegreen algae showed greater growth rate in the fish treatments than the control and this was due to higher nutrients supplied from fish excretions. Overall, simple fish biomanipulation on algal control was not effective at all in these laboratory tests.

High Cell Density Culture of Micro-algal Dunaliella bardawil (미세조류 Dunaliella bardawil의 고농도 세포배양)

  • 정욱진;왕만식;최승인;정병철;김주곤
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.160-166
    • /
    • 1999
  • High cell density cultivation of microalga Dunaliella bardawil using nitrogen fed-batch cultures was studied in batch flask. Optimum environmental conditions include concentrated nutrients except NaCl and carbon sources, carbon sources, pH, light, agitation, nitrate and phosphate ions. Cell growth, consumption rates of nitrate and phosphate ions were monitored. Optimal conditions for higher cell density were found to be(in the range tested): 5 times concentrated media(1 times-10 times concentrated media) pH 8.0 (7.0-9.0) white light(blue and red light) 15mM of nitrate (0.94-15mM) 250mM $NaHCO_3$ and $CO_2$ gas. However, the addition of phosphate ions did not enhance the algal maximum cell density and specific growth rate. Nitrate was found to be effective for the cell growth. The maximum cell density of fed-batch culture using nitrate ions in $8.955{\times}106$cells/ml after 189hr incubation.

  • PDF

Internal and External Changes in Reactive Oxygen Species (ROS) During the Growth Stages of Harmful Algal Bloom Species (적조생물의 성장단계에 따른 세포 내·외 Reactive Oxygen Species (ROS) 변화)

  • Minji Lee;Danbi Bang;Seong-Su Shin;Yoonja Kang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.4
    • /
    • pp.389-396
    • /
    • 2024
  • Reactive oxygen species (ROS) generated by harmful algal blooms (HABs) exert detrimental effects on aquaculture systems. Fish gill cells deteriorate upon exposure to HABs, suggesting that internally generated ROS in HABs influences the external environment. Therefore, we investigated the internal and external changes in ROS concentrations during growth using fluorescence staining of four representative HABs: Alexandrium affine, Chattonella marina, Karenia mikimotoi, and Margalefidinium polykrikoides. The concentrations of H2O2 and O2- produced by A. affine were low; H2O2 from M. polykrikoides was primarily detected internally throughout the experiments, and O2- was not detected. High H2O2 and O2- concentrations were observed in K. mikimotoi during the death phase, with weak external O2- concentrations. Regarding C. marina, which produces large amounts of ROS, H2O2 was observed internally during the exponential phase, whereas weak O2- concentrations were measured externally in the stationary phases. Collectively, our results highlight that ROS concentrations and internal/external distributions are functions of HABs and growth stage. These differences indicate the potential allelopathic mechanisms of proliferating HABs and suggest a possible impact of ROS on aquaculture organisms.

Effect of Coagulants and Separation Methods on Algal Removal in Water Treatment Process (정수처리에서 응집제 종류와 분리공정이 조류 제거에 미치는 영향)

  • Park, Hung-Suck;Lee, Sang-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.279-289
    • /
    • 2000
  • The objective of this study was to investigate the effect of coagulants and solid-liquid separation methods on algal removal in water treatment processes. Thus characterization of raw water quality in terms of turbidity. UV-254, $KMnO_4$ consumption, chlorophyll-a and correlation analysis of these parameters were conducted. In addition, the effect of commercial Al-based coagulants(Alum. PAC and PACS) on algal removal was studied by turbidity and organic removal, algal species removal, characteristic of pH drop and alkalinity consumption using laboratory jar tests. Organic components including UV-254, $KMnO_4$ consumption, chlorophyll-a in case of algal bloom were highly correlated with turbidity and the correlation coefficients of UV-254, $KMnO_4$ consumption, chlorophyll-a with turbidity were 0.775, 0674 and 0.623, respectively. In coagulation and sedimentation, the Al-based coagulants showed similar efficiency of organic and turbidity removal in low organic($KMnO_4$ consumption below 15mg/l) and low turbidity(below 30NTU). However, PAC and PACS showed better algal removal than alum in high organic concentration($KMnO_4$ consumption above 20mg/l) and high turbidity(above 100NTU) raw water conditions generated by high algal growth, which is considered to be due to the floc settleability. In comparison of sedimentation and flotation after chemical coagulation and flocculation, the removal efficiency of organic and turbidity were higher in case of alum dose with flotation than with sedimentation, while those were better in case or PAC and PACS with sedimentation than with flotation. Thus, Alum with flotation and PAC and PACS with sedimentation is recommended for efficient algal removal. The dominant phytoplankton in raw water were Microcystic and pediastrum simplex and the removal efficiency of algae with sedimentation using alum. PAC and PACS were 27%, 45% and 22% respectively, while those with DAF showed 100% removal of phytoplankton and zooplankton.

  • PDF

Effect of Selective Withdrawal on the Control of Turbidity Flow and Its Water Quality Impact in Deacheong Reservoir (선택취수에 따른 대청호 탁수 조절효과 및 수질영향 분석)

  • Jung, Yong-Rak;Liu, Huan;Kim, Yu-Kyung;Ye, Lyeong;Chung, Se-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.601-615
    • /
    • 2007
  • A selective withdrawal method has been widely used to control the quality of water released from a stratified reservoir and to improve downstream ecosystem habitats. Recently, several existing reservoir withdrawal facilities have been modified to accommodate multi-level water intake capabilities in order to adapt the impact of long-term discharge of high turbidity flow. The purpose of this study was to assess the effect of selective withdrawal method on the control of downstream turbidity and its impact on water quality in Daecheong Reservoir. A laterally integrated two-dimensional hydrodynamic and eutrophication model, which was calibrated and validated in the previous studies, was applied to simulate the temporal variations of outflow turbidity with various hypothetical selective withdrawal scenarios. In addition, their impacts on the algal growth as well as water quality constituents were analyzed in three different spatial domains of the reservoir The results showed that the costly selective withdrawal method would provide very limited benefits for downstream turbidity control during two years of consecutive simulations for 2004-2005. In particular, an excessive withdrawal from the epilimnion zone for supplying upper layer clean water resulted in movement of turbidity plume that contained high phosphorus concentrations upward photic zone, and in turn increased algal growth in the lacustrine zone.

Isolation and Characterization of Alga-Lytic Bacterium HY0210-AK1 and Its Degradability of Anabaena cylindrica (남조류 분해세균 HY0210-AK1의 분리와 특성 및 Anabaena cylindrica 분해 활성)

  • 장은희;김정동;한명수
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • To isolate alga-lytic bacteria, a number of samples were collected from Lake of Sukchon and Pal'tang reservoir where cyanobacteria blooming occurred. HY0210-AK1, which exhibited high alga-lytic activity, was isolated using Anabaena cylindrica lawn. The morphological and biochemical characteristics of the isolate HY0210-AK1 were very similar to that of the genus Rhizobium. Taxonomic identification including 16S rDNA base sequencing and phylogenetic analysis indicated that the isolate Hy0210-AK1 had a 99.1% homology in its 16S rDNA babe sequence with Sphingobium herbicidovorans. A. cylindrica NIES-19 was susceptible to the alga-lytic bacterial attack. The growth-inhibiting offset of the bacterium was not different on A. cylindrica NIES-19 when Sphingobium herbicidovorans HY0210-AK1 was in the lag, exponential, and stationary growth phase, although the alga-Iytic effect of S. herbici-dovorans HY0210-AK1 that in stationary growth phase was somewhat pronounced at the first time of inoculation. When S. herbicidovorans HY0210-AK1 was inoculated was inoculated with $1\times 10^{8}$ CFU $ml^{-1}$ together with A cylindrica NIES-19, the bacterium proliferated and caused algal lysis. A. cylindrica NIES-19 died when S. herbicidovorans HY0210 AKl was added to the algal culture but not when duly the filtrates from the bacterial culture was added. This suggests that extracellular substances are not responsible for inhibition of A. cylindrica NIES-19 and that algal Iysis largely attributed to direct interaction between S. herbicidovorans HY0210-AK1 and A. cylindrica NIES-19. The alga-lytic bacterium HY0210-AK1 caused cell lysis and death of three strain of Micro-cystis aeruginosa, but revealed no alga-Iytic effects on the Stephanodiscus hantzschii.

Water Quality Assessment by Algal Growth Potential (AGP) from Midstream to Downstream of the Kum River (금강 중 ${\cdot}$ 하류에서 AGP에 의한 수질평가)

  • Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.244-250
    • /
    • 2000
  • Algal growth potential (AGP) bioassay were conducted to assess the water quality and fertility in the Kum River from March 1998 to June 1999. AGP values were always the highest at the conjuction site of the Kapchon, which is a tributary of the Kum River. Average value of AGP by Microcystis aeruginosa in the main river and tributary was 17.0 mg dw/l, 48.3 mg dw/l, respectively. AGP values decreased towards the lower part of the river and consisted in the water quality or nutrient analysisresults. Among the tributaries, AGP of the Kapchon, Mihochon and Soksongchon were relatively high, and the average value was 161.2, 50.3 and 125.6 mg dw/l, respectively. AGP value in the Yukuchon was lowest among the study stations with <2.7 mg dw/l. Water quality in the lower part of the Kum River deteriorated in drought season, and the AGP values of this season were higher than those in other seasons. Based on correlation analysis between AGP results and nutrients, limiting nutrient appeared to be P because SRP (r = 0.99) was higher than other nutrients, and N uptake in algal growth was preferred by $NH_4$ rather than $NO_3$. The variation of AGP was different according to localities and seasons, and it was related to nutrient fluctuation in the inlet tributary. Water quality status according to AGP was assessed to be eutrophic.

  • PDF

DISTRIBUTION CHARACTERISTICS OF NUTRIENTS IN CHINESE BOHAI SEA

  • Li, Zhengyan;Gao, Huiwang;Bai, Jie;Shi, Jinhui
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2001.11a
    • /
    • pp.19-29
    • /
    • 2001
  • Nutrients are key environmental factors in marine ecosystem. They limit algal growth when at low concentrations and cause algal bloom when at high contents. They also control the growth and succession of many other biota including bacteria and zooplankton, either directly or indirectly. Nutrient contents therefore affect both the structure and functions of marine ecosystem. To study the contents and distribution of nutrients in Chinese Bohai Sea, two cruise surveys were undertaken in August 2000 (summer) and January 2001 (winter), respectively. A total of 595 water samples were collected from 91 sites. After collection the samples were transported to the laboratory and five nutrients, i.e., nitrate, nitrite, ammonia, phosphate and silicate, were analyzed. The results showed that tile average concentration of total inorganic nitrogen (TIN) in Bohai Sea in winter (6.5293.717 ${\mu}$mol$.$l$\^$-1/) was significantly higher than that in summer (3.717 ${\mu}$mol$.$l$\^$-1/). The phosphorus concentration in winter (0.660 ${\mu}$mol$.$l$\^$-1/) was also significantly higher than that in summer (0.329 ${\mu}$mol$.$l$\^$-1/). Mean silicate concentration in winter (7.858 ${\mu}$mol$.$l$\^$-1/) was not significantly different from that in summer (7.200 ${\mu}$mol$.$l$\^$-1/). Nutrients also varied considerable among different areas within Bohai Sea. TIN concentration in Laizhou Bay (4.444 ${\mu}$mol$.$l$\^$-1/), for example, was significantly higher than those in Bohai Bay (2.270 ${\mu}$mol$.$l$\^$-1/) and Bohai Straight (2.431 ${\mu}$mol$.$l$\^$-1/), which probably reflects tile discharge of large amounts of nitrogen into Laizhou Bay via Yellow River. The nutrients also showed vertical distribution pattern. In summer, nutrients in bottom layer were generally higher than those in surface and medium layers. In winter, however. nutrients in different layers were not significantly different Compared with historic data, TIN contents increased continuously since early 1980s, phosphorus arid silicone contents, nevertheless, fell down to some degree. Based on atomic ratios of different nutrients, nitrogen is still the main limiting factor for algal growth in Bohai Sea.

  • PDF