• Title/Summary/Keyword: Algal blooms

Search Result 243, Processing Time 0.025 seconds

Physiological Ecology of parasitic Dinoflagellate Amoebophrya and Harmful Algal Blooms (기생성 와편모류 Amoebophrya의 생리 생태적 특성과 적조)

  • 박명길
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.181-194
    • /
    • 2002
  • Parasitism is a one-sided relationship between two organisms in which one benefits at the expense of the other. Parasitic dinoflagellates, particularly species of Amoebophrya, have long been thought to be a potential biological agent for controlling harmful algal bloom(HAB). Amoebophrya infections have been reported for over 40 species representing more than 24 dinoflagellate genera including a few toxic species. Parasitic dinoflagellates Amoebophrya spp. have a relatively simple life cycle consisting of an infective dispersal stage (dinospore), an intracellular growth stage(trophont), and an extracellular reproductive stage(vermiform). Biology of dinospores such as infectivity, survival, and ability to successfully infect host cells differs among dinoflagellate host-parasite systems. There are growing reports that Amoebophrya spp.(previously, collectively known as Amoebophrya ceratii) exhibit the strong host specificity and would be a species complex composed of several host-specific taxa, based on the marked differences in host-parasite biology, cross infection, and molecular genetic data. Dinoflagellates become reproductively incompetent and are eventually killed by the parasite once infected. During the infection cycle of the parasite, the infected host exhibits ecophysiologically different patterns from those of uninfected host in various ways. Photosynthetic performance in autotrophic dinoflagellates can be significantly altered following infection by parasitic dinoflagellate Amoebophrya, with the magnitude of the effects over the infection cycle of the parasite depending on the site of infection. Parasitism by the parasitic dinoflagellate Amoebophrya could have significant impacts on host behavior such as diel vertical migration. Parasitic dinoflagellates may not only stimulate rapid cycling of dissolved organic materials and/or trace metals but also would repackage the relatively large sized host biomass into a number of smaller dinospores, thereby leading to better retention of host's material and energy within the microbial loop. To better understand the roles of parasites in plankton ecology and harmful algal dynamics, further research on a variety of dinoflagellate host-parasite systems is needed.

Application of Spectral Indices to Drone-based Multispectral Remote Sensing for Algal Bloom Monitoring in the River (하천 녹조 모니터링을 위한 드론 다중분광영상의 분광지수 적용성 평가)

  • Choe, Eunyoung;Jung, Kyung Mi;Yoon, Jong-Su;Jang, Jong Hee;Kim, Mi-Jung;Lee, Ho Joong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.419-430
    • /
    • 2021
  • Remote sensing techniques using drone-based multispectral image were studied for fast and two-dimensional monitoring of algal blooms in the river. Drone is anticipated to be useful for algal bloom monitoring because of easy access to the field, high spatial resolution, and lowering atmospheric light scattering. In addition, application of multispectral sensors could make image processing and analysis procedures simple, fast, and standardized. Spectral indices derived from the active spectrum of photosynthetic pigments in terrestrial plants and phytoplankton were tested for estimating chlorophyll-a concentrations (Chl-a conc.) from drone-based multispectral image. Spectral indices containing the red-edge band showed high relationships with Chl-a conc. and especially, 3-band model (3BM) and normalized difference chlorophyll index (NDCI) were performed well (R2=0.86, RMSE=7.5). NDCI uses just two spectral bands, red and red-edge, and provides normalized values, so that data processing becomes simple and rapid. The 3BM which was tuned for accurate prediction of Chl-a conc. in productive water bodies adopts originally two spectral bands in the red-edge range, 720 and 760 nm, but here, the near-infrared band replaced the longer red-edge band because the multispectral sensor in this study had only one shorter red-edge band. This index is expected to predict more accurately Chl-a conc. using the sensor specialized with the red-edge range.

The difference of photosynthetic efficiency and electron transport rate by control of the red tide organism using algicidal substance and yellow clay (살조물질과 황토를 이용한 적조생물 제어에 따른광합성 효율 및 전자전달율의 차이)

  • Son, Moonho;Baek, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2951-2957
    • /
    • 2015
  • The development of worldwide harmful algal blooms(HAB) is a serious problem for public health and fisheries industries. To evaluate the algicidal impact on the HAB species, algicide thiazolidinedione derivative (TD49) and yellow clay were examined, which is focus on assess the algicidal effects and inhibition to photosynthesis of HAB species. To obtain the detailed information, we analyzed the viability of target species related to activity Chl. a, photosynthetic efficiency($F_v/F_m$), and electron transport rate(ETR). Culture experiment was conducted to evaluate the algicidal effects of three harmful species(raphidophyceae Heterosigma akashiwo, Chattonella marina, and dinophyceae Heterocapsa circularisquama) and one non-harmful species (cryptophyceae Rhodomonas salina). Our experiments revealed that three HAB species were easily destroyed of the cell walls after TD49 dosing. Also, they had significantly reducing values of active Chl. a, $F_v/F_m$, and ETR, due to the damage of photosystem II by inter-cellular disturbance. As a result, the algicidal effect(%) for the three HABs were as follows, in the order of greatest to the least: H. circularisquama> C. marina> H. akashiwo. However, the algicidal effect for yellow clay remained to be <30% (p>0.01), implying that it may not have damaged the photosystem II. On the other hand, non-HAB R. salina was promoted at both TD49 and yellow clay treatments. Our results demonstrated that the TD49 is a good agent for the control of HABs H. akashiwo, C. marina, and H. circularisquama, whereas the yellow clay would not be suitable for the field application based on our experimental results.

Nitrogen and Phosphorus Uptake and Growth Kinetics of Microcystis aeruginosa Cultured under Chemostats (연속배양에서 Microcystis aeruginosa의 질소 인 흡수와 생장 특성)

  • Lee, Ok-Hee;Cho, Kyung-Je
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.119-130
    • /
    • 2006
  • As unialgal cultures to examine the growth kinetics of an algal species, Microcystis aeruginosa was grown in chemostats with nitrogen and phosphorus limitation. The nutrient concentrations of $NH_4\;^+\;and\;PO_4\;^{3-}$ to limit the growth of M, aeruginosa were approximately 200 ${\mu}M$ and 7 ${\mu}M$, respectively. Cell size of the algae decreased towards the $NH_4$-nitrogen limitation under a constant dilution rate, while it increased in the $PO_4$-limitaion. The cell quota of nitrogen under nitrogen-limited conditions was 6.1 ${\mu}mol$ mg $C^{-1}$ and, under nitrogen sufficient conditions, ranged from 9.5 ${\mu}mol$ mg $C^{-1}$ to 12.4 ${\mu}mol$ mg $C^{-1}$. In addition to the cell quota, the half-saturation constants for nitrogen uptake ($K_s$) and the growth rate (${\mu}_m$) was 36 ${\sim}$ 61 ${\mu}M$ and 0.28 ${\sim}$ 0.35 ${\mu}mol$ cell ${\cdot}$ $hr^{-1}$ to show high values in comparison with other algal species. As the limiting concentration, cell quota and uptake rate of M. aeruginosa were higher than those of any other species, the its nitrogen requirement would be great. In the other side, as the half saturation constant ($K_s$) for nitrogen uptake was higher, and the ratios ofmaximum uptake rate ($V_m$) and $K_s$ was relatively low, the species would have the low competitive ability in the low nitrogen concentration in the ambient water. However, the low concentration of nitrogen in the Nakdong River during the Microcystis outbreak would be the inevitable results of the algal blooms. In the lower Parts of the Nakdong River, the nutrient status was coupled with the growth kinetics of the blooming algae to have clear seasonal variations through a year.

Endoparasitic Dinoflagellates, Amoebophrya spp. and their Host Dinoflagellates in Jinhae Bay, Korea (진해만에 출현하는 기생성 와편모류 Amoebophrya spp.와 숙주 와편모류)

  • Park, Jong-Gyu;Hur, Hyun-Jung;Coats, D. Wayne;Yih, Won-Ho;Ha, Na
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.359-369
    • /
    • 2007
  • Amoebophrya is an obligate endoparasitic eukaryotic dinoflagellate infecting host species and eventually killing them within a short period. Because of its host specificity and significant impacts on population dynamics of host species, it has long been proposed to be a potential biological agent for controlling harmful algal bloom (HAB). For several decades, the difficulties of culturing host - parasite systems have been a great obstacle to further research on the biology of Amoebophrya but recent success of several culture systems reactivates this research field. In this study, as a preliminary work for understanding the impacts of Amoebophrya on the population dynamics of host species, semimonthly occurrence of infected host dinoflagellates by Amoebophrya spp. had been observed in Jinhae Bay for two years and with a host - parasite system cultivated, host specificity of Amoebophrya spp. on several dinoflagellates was tested. Amoebophrya spp. were observed in the cellular organelle and cytoplasm of several species including Akashiwo sanguinea, Ceratium fusus, Dinophysis acuminata, Heterocapsa triquetra, Oblea sp., Prorocentrum minimum, P. triestinum, Scrippsiella spinifera, and S. trochoidea. Among them two host - parasite systems for an athecate dinoflagellate, A. sanguinea, and for a thecate dinoflagellate, H. triquetra, had been able to be successfully established as laboratary cultures. Cross-infection tests for 6 species of dinoflagellates in which Amoebophrya was observed or had been reported to exist confirmed high preference for host species of the parasite. Through the continuous research on Amoebophrya occurring in Korean coastal waters, we need to maintain various host - parasite culture systems, which will be very helpful for understanding its ecological role in marine food webs and for applying the species to biologically control harmful algal blooms.

Seasonality of Phytoplankton in Dongbok Lake, Korea (동복호의 식물플랑크톤 출현 패턴)

  • Jeong, Myung-Hwa;Park, Jong-Hwan;Kim, Sang-Don;Kim, Dong-Ho;Chang, Nam-Ik;Lee, Hak-Young
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.367-376
    • /
    • 2008
  • The seasonality of phytoplankton in Dongbok lake was analysed from March to November 2003. The concentrations of TN and TP showed nearly constant level except high concentrations in May at dam site of Dongbok lake. Chlorophyll ${\alpha}$ concentration was highest at dam site in May with 225.3 ${\mu}g$ L$^{-1}$ and high in spring and fall and low in summer at upper and central regions of Dongbok lake. A total of 108 phytoplankton species was identified as an algal flora of Dongbok lake. They were 54 Chlorophyceae, 30 Bacillariophyceae, 12 Cyanophyceae, and 12 species of other taxa. Total cell biomass of phytoplankton showed peaks in May$\sim$June and August$\sim$September, and low biomass in July at dam site. However, upper and central regions of Dongbok lake showed no clear patterns in cell biomass. Maximum biomass was 7,158 cells mL$^{-1}$ at dam site in May with the blooms of Peridinium bipes f. occulatum. The general seasonality of phytoplankton in Dongbok lake was Bacillariophyceae-Dinophyceae/Bacillariophyceae-Cyanophyceae/Chlorophyceae/Bacillariophyceae-Bacillariophyceae in 2003.

Water Quality Characteristics Along Mid-western Coastal Area of Korea (한국 서해 중부 연안역의 수질환경 특성)

  • Lim, Dhong-Il;Kang, Mi-Ran;Jang, Pung-Guk;Kim, So-Young;Jung, Hoi-Soo;Kang, Yang-Soon;Kang, Young-Shil
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.379-399
    • /
    • 2008
  • Spatial-temporal variations in physiochemical water qualities (temperature, salinity, DO, SPM, POC and nutrients) of surface and bottom waters were investigated along the mid-western coastal area (Taean Peninsula to Gomso Bay) of Korea. Spatial distribution patterns of temperature and salinity were mostly controlled by the physical mixing process of freshwater from Geum River and/or Gyunggi Bay with nearby coastal water. A strong tidal front is formed off Taean Peninsula during spring and summer. Seasonal variations in nutrient concentrations, lower in spring and summer and higher in fall and winter, are primarily regulated by magnitude of phytoplankton occurrence rather than freshwater loadings into the bay. Based on seasonal and spatial variability of physicochemical parameters, water quality of the study area can be divided into four water masses; Gyunggi Bay-influenced Water Mass (GBWM), Geum River-influenced Water Mass (GRWM), Yellow Sea Bottom Cold Water Mass (YSBCWM) and Cheonsu Bay Water Mass (CBWM). Water quality of the GBWM (Taean Peninsula coastal area), which has relatively low salinity and high concentrations of nutrients, is strongly controlled by the Gyunggi Bay coastal water, which is under influence of the Han River freshwater. In this water mass, the mixed layer is always developed by strong tidal mixing. As a result, a tidal front is formed along the offshore boundary of the mixed layer. Such tidal fronts probably play an important role in the distribution of phytoplankton communities, SPM and nutrients. The GRWM, with low salinity and high nutrients, especially during the flood summer season, is closely related to physiochemical properties of the Geum River. During the flood season, nutrient-enriched Geum River water mass extends up to 60 km away from the river mouth, potentially causing serious environmental problems such as eutrophication and unusual and/or noxious algal blooms. Offshore (<$30{\sim}40m$ in water depth) of the study area, YSBCWM coupled with a strong thermocline can be identified in spring-summer periods, exhibiting abundant nutrients in association with low temperature and limited biological activity. During spring and summer, a tidal front is formed in a transition zone between the coastal water mass and bottom cold water mass in the Yellow Sea, resulting in intensified upwelling and thereby supplying abundant nutrients to the GBWM and GRWM. Such cold bottom water mass and tidal front formation seems to play an important role in controlling water quality and further regulating physical ecosystem processes along mid-western Korean coastal area.

Molecular Identification of the Bloom-forming Cyanobacterium Anabaena from North Han River System in Summer 2012 (북한강 수계 조류대발생 원인종 남조 Anabaena의 분자계통학적 검토)

  • Li, Zhun;Han, Myung-Soo;Hwang, Su-Ok;Byeon, Myeong-Seop;Hwang, Soon-Jin;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.301-309
    • /
    • 2013
  • Between May and August 2012, a massive cyanobacterial bloom with Anabaena has been occurred throughout the North Han River. Sampling was conducted at one station on each lake, L. Uham, L. Cheongpyung, and L. Paldang, where occurred a dense bloom, in 13 July. According to the microscopic examination, the blooms was dominated by one specific filamentous cyanobacterium Anabaena and other phytoplankton. Morphologically, previous literature proven that this Anabaena species is A. crassa (Lemmermann) Komark.-Legn. & Cronberg. However, identification of species in a mixed population is complicated due to limited morphological differences. Therefore, with live sample including trichome, akinete and heterocyst, the sequences of 16S rRNA gene of Anabaena isolates were cloned and analyzed, and three 16S rRNA gene sequences of 1188~1520 bp in length were obtained. It was shown from the homologous analysis results that the obtained 16S rRNA sequences were highly homologous to the relevant sequences of A. crassa in GenBank. The 16S rRNA sequences of 63 species were retrieved from GenBank, and the phylogenetic tree was constructed by using these sequences.

Biological Study on the Increment of Survival Rate during Early Life Cycle in the Rockfish, Sebastes schlegeli(Teleostei: Scorpaenidae) - III. Ultrastructure of the Adult Digestive Tract (조피볼락, Sebastes schlegeli의 초기 생활사 동안 생존율 향상을 위한 생물학적 연구 - III. 성체 소화관의 미세구조)

  • Chin, Pyung;Lee, Jung-Sick;Shin, Yun-Kyung;Kim, Hak-Gyoon
    • Korean Journal of Ichthyology
    • /
    • v.10 no.1
    • /
    • pp.115-127
    • /
    • 1998
  • The digestive tract of the rockfish, Sebastes schlegeli composed of pharynx, esophagus, stomach, intestine, anus and ten or eleven pyloric caeca. Pyloric caeca is blind sac of banana shape, and that is originated from pyloric portion of the stomach. The relative length of gut(RLG), that is length of digestive tract to standard length, is about 1.56(n=10). Esophageal muscularis consists of thin outer layer of longitudinal muscle and thick inner layer of circular muscle. Mucosal epithelium consists of columnar epithelium with short microvilli and contains numerous mucous secretory cell. The mucosal folds of the stomach are regular, and the muscularis consists of longitudinal, oblique and circular muscle layer. The chief cell of the gastric gland have a tubular mitochondria, endoplasmic reticula and numerous secretory granules in electron-dense. However, parietal cell contains small mitochondria, endoplasmic reticula and vacuoles in low electron density. Mucosal epithelium of the pyloric caeca and intestine composed of columnar epithelium, goblet cell, rodlet cell and dark cell. Columnar absorptive cell in the pyloric caeca and intestine contains well developed mitochondria, endoplasmic reticula, vesiculated granules in high electron density, pinocytotic vesicles and multivesicular body. Rodlet cell have a well developed cytoplasmic capsule and the endoplasmic reticula in the cytoplasm. Dark cell showing a high electron density in the cytoplasm and contains well developed mitochondria. Columnar epithelium of the intestine have a well developed intercellular junction and the microvilli which contains actin filament originated from the cytoplasm. Mucosal epithelium of the intestine have a longer microvilli and more abundant goblet cells than in the pyloric caeca.

  • PDF

Biological Study on the Increment of Survival Rate during Early Life Cycle in the Rockfish, Sebastes schlegeli (Teleostei: Scorpaenidae) - II. Energy Budget of the Larvae and Juveniles Stages (조피볼락, Sebastes schlegeli의 초기생활사 동안 생존율 향상을 위한 생물학적 연구 - II. 자치어기의 에너지수지)

  • Chin, Pyung;Shin, Yun-Kyung;Lee, Jung-Sick;Kim, Hak-Gyoon
    • Korean Journal of Ichthyology
    • /
    • v.10 no.1
    • /
    • pp.106-114
    • /
    • 1998
  • In order to estimate energy budget of the rockfish, Sebastes schlegeli juvenile, during the period from parturition to juvenile, of rockfish were reared at constant condition of water temperature($16^{\circ}C$ and $20^{\circ}C$). Energy used by the reared juveniles were calculated from estimates of data on growth, oxygen consumption, nitrogen excretion, feeding and energy content. After parturition, total length of juvenile was 4.56~5.49mm(average 4.97mm, n=20), and the average dally growth rates were 0.50mm at $20^{\circ}C$. The weight-specific oxygen consumption and nitrogen excretion rates decreased with increasing body weight. Temperature significantly affected oxygen consumption and nitrogen execretion rates, with the higher rates at $20^{\circ}C$ than $16^{\circ}C$. During the 25 days from parturition to jllveniles, feeding rates were 65.8cal at $16^{\circ}C$, and 89.2cal at $20^{\circ}C$. The assimilation effeciency estimated by nitrogen content of food and egested feces were 85.21% at $16^{\circ}C$ and $20^{\circ}C$. During the period from parturition to juvenile, energy was used the higher in body growth than in oxygen consumption. The gross growth efficiencies($K_1$)and net growth efficiencies($K_2$) of the rockfish, Sebastes schlegeli juvenile ranged from 43% to 47% and from 50% to 55%, respectively.

  • PDF