• Title/Summary/Keyword: Algal bloom warning system

Search Result 4, Processing Time 0.016 seconds

Analysis of Chlorophyll-a and Algal Bloom Indices using Unmanned Aerial Vehicle based Multispectral Images on Nakdong River (무인항공기 기반 다중분광영상을 이용한 낙동강 Chlorophyll-a 및 녹조발생지수 분석)

  • KIM, Heung-Min;CHOE, Eunyoung;JANG, Seon-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.101-119
    • /
    • 2022
  • Existing algal bloom monitoring is based on field sampling, and there is a limit to understanding the spatial distribution of algal blooms, such as the occurrence and spread of algae, due to local investigations. In this study, algal bloom monitoring was performed using an unmanned aerial vehicle and multispectral sensor, and data on the distribution of algae were provided. For the algal bloom monitoring site, data were acquired from the Mulgeum·Mae-ri site located in the lower part of the Nakdong River, which is the areas with frequent algal bloom. The Chlorophyll-a(Chl-a) value of field-collected samples and the Chl-a estimation formula derived from the correlation between the spectral indices were comparatively analyzed. As a result, among the spectral indices, Maximum Chlorophyll Index (MCI) showed the highest statistical significance(R2=0.91, RMSE=8.1mg/m3). As a result of mapping the distribution of algae by applying MCI to the image of August 05, 2021 with the highest Chl-a concentration, the river area was 1.7km2, the Warning area among the indicators of the algal bloom warning system was 1.03km2(60.56%) and the Algal Bloom area occupied 0.67km2(39.43%). In addition, as a result of calculating the number of occurrence days in the area corresponding to the "Warning" in the images during the study period (July 01, 2021~November 01, 2021), the Chl-a concentration above the "Warning" level was observed in the entire river section from 12 to 19 times. The algal bloom monitoring method proposed in this study can supplement the limitations of the existing algal bloom warning system and can be used to provide information on a point-by-point basis as well as information on a spatial range of the algal bloom warning area.

A study on algal bloom forecast system based on hydro-meteorological factors in the mainstream of Nakdong river using machine learning (머신러닝를 이용한 낙동강 본류 구간 수문-기상인자 조류 예보체계 연구)

  • Taewoo Lee;Soojun Kim;Junhyeong Lee;Kyunghun Kim;Hoyong Lee;Duckgil Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.245-253
    • /
    • 2024
  • Blue-green algal bloom, or harmful algal bloom has a negative impact on the aquatic ecosystem and purified water supply system due to oxygen depletion in the water body, odor, and secretion of toxic substances in the freshwater ecosystem. This Blue-green algal bloom is expected to increase in intensity and frequency due to the increase in algae's residence time in the water body after the construction of the Nakdong River weir, as well as the increase in surface temperature due to climate change. In this study, in order to respond to the expected increase in green algae phenomenon, an algal bloom forecast system based on hydro-meteorological factors was presented for preemptive response before issuing a algal bloom warning. Through polyserial correlation analysis, the preceding influence periods of temperature and discharge according to the algal bloom forecast level were derived. Using the decision tree classification, a machine learning technique, Classification models for the algal bloom forecast levels based on temperature and discharge of the preceding period were derived. And a algal bloom forecast system based on hydro-meteorological factors was derived based on the results of the decision tree classification models. The proposed algae forecast system based on hydro-meteorological factors can be used as basic research for preemptive response before blue-green algal blooms.

Analysis of influential factors of cyanobacteria in the mainstream of Nakdong river using random forest (랜덤포레스트를 이용한 낙동강 본류의 남조류 발생 영향인자 분석)

  • Jung, Woo Suk;Kim, Sung Eun;Kim, Young Do
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, the main influencing factors of the occurrence of cyanobacteria at each of the eight Multifunctional weirs were derived using a random forest, and a categorical prediction model based on a Algal bloom warning system was developed. As a result of examining the importance of variables in the random forest, it was found that the upstream points were directly affected by weir operation during the occurrence of cyanobacteria. This means that cyanobacteria can be managed through efficient security management. DO and E.C were indicated as major influencers in midstream. The midstream section is a section where large-scale industrial complexes such as Gumi and Gimcheon are concentrated as well as the emissions of basic environmental facilities have a great influence. During the period of heatwave and drought, E.C increases along with the discharge of environmental facilities discharged from the basin, which promotes the outbreak of cyanobacteria. Those monitoring sites located in the middle and lower streams are areas that are most affected by heat waves and droughts, and therefore require preemptive management in preparation for the outbreak of cyanobacteria caused by drought in summer. Through this study, the characteristics of cyanobacteria at each point were analyzed. It can provide basic data for policy decision-making for customized cyanobacteria management.

A study on the characteristics of cyanobacteria in the mainstream of Nakdong river using decision trees (의사결정나무를 이용한 낙동강 본류 구간의 남조류 발생특성 연구)

  • Jung, Woo Suk;Jo, Bu Geon;Kim, Young Do;Kim, Sung Eun
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.312-320
    • /
    • 2019
  • The occurrence of cyanobacteria causes problems such as oxygen depletion and increase of organic matter in the water body due to mass prosperity and death. Each year, Algae bloom warning System is issued due to the effects of summer heat and drought. It is necessary to quantitatively characterize the occurrence of cyanobacteria for proactive green algae management in the main Nakdong river. In this study, we analyzed the major influencing factors on cyanobacteria bloom using visualization and correlation analysis. A decision tree, a machine learning method, was used to quantitatively analyze the conditions of cyanobacteria according to the influence factors. In all the weirs, meteorological factors, temperature and SPI drought index, were significantly correlated with cyanobacterial cell number. Increasing the number of days of heat wave and drought block the mixing of water in the water body and the stratification phenomenon to promote the development of cyanobacteria. In the long term, it is necessary to proactively manage cyanobacteria considering the meteorological impacts.