• Title/Summary/Keyword: Alfalfa yield

Search Result 108, Processing Time 0.025 seconds

Stand Density Effects on Herbage Yield and Forage Quality of Alfalfa

  • Min, D.H.;King, J.R.;Kim, D.A.;Lee, H.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.929-934
    • /
    • 2000
  • Optimum stand density of alfalfa (Medicago sativa L.) varies with locations and climates. Stand density is one of the factors that determines herbage yield, forage quality and persistence of alfalfa. As establishment costs increase, the question arises whether present population densities are optimum for obtaining maximum herbage yield and forage quality. The objectives of this study were: 1) to determine the optimum plant density for highest herbage yield and forage quality for the dehydrated alfalfa industry under Edmontons climatic conditions in Alberta, Canada; 2) to compare herbage yield and forage quality of the cultivars 'Algonquin' and 'Vernal' grown at a range of stand densities. Alfalfa seedlings of both cultivars were either transplanted at spacings of 6, 10, 15 and 25 cm or direct seeded at the 4.5 cm plant spacings, providing population densities of 494, 278, 100, 45 and $16plants/m^2$. The experimental design was a randomized complete block with a split-plot arrangement having three replicates; the main plots consisted of two alfalfa cultivars Algonquin and Vernal, and the sub-plots were the five population densities. The cultivar Vernal had significantly higher annual yield than did the cultivar Algonquin. There was no significant effect of plant density on herbage yield. There was no difference in crude protein (CP) between the two cultivars. At the first cut, there was a significant quadratic effect of plant density on CP content and the greatest CP occurred at the 100 plants/m2 density. Crude protein was not affected by plant density at the second cut. Acid detergent fiber (ADF) and neutral detergent fiber (NDF) were not affected by plant density. The cultivar Algonquin usually had a lower ADF and NDF than cultivar Vernal. In conclusion, high population densities ($278plants/m^2$ or more) of alfalfa did not improve herbage yield and forage quality compared with low plant population densities ($100plants/m^2$ or less) of alfalfa.

Effects of harvest intervals and seeding rates on dry matter yield and nutritive value of alfalfa cultivars

  • Xu, Xuan;Min, Doohong;McDonald, Iryna
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1098-1113
    • /
    • 2021
  • Maturation process of alfalfa (Medicago sativa L.) could be prevented by the reduction of lignin content in terms of conventional breeding or transgenic technology. Alfalfa could exhibit higher leaf/stem ratio, with a concern of yield loss. The objective of this study was to compare forage yield and nutritive value of low lignin alfalfa and two reference varieties subjecting to two harvest intervals and three seeding rates. The experimental design was a randomized complete block in a split-split plot arrangement with four replicates, where harvest intervals (28-day and 35-day) were assigned to whole plots, seeding rates were subplots, and varieties were sub-subplots. The weighted mean nutritive value was applied to two production years of 2016 and 2017. Hi-Gest 360 (low lignin alfalfa) provided similar yield potential and increased nutritive value compared to two reference varieties. Over a two-year production period, alfalfa harvested at every 28-day interval provided more economic returns than those at 35-day interval. For the seeding year and first production year, five cuts made by the 28-day interval produced more yield than four cuts by the 35-day interval. Due to limited rainfall in May 2017, a sharp drop of the first cutting overturned the advantage of the five-cut system. Shorter intervals between harvests generally increased crude protein (CP) concentrations. The differences of relative feed value (RFV) between two harvest intervals tended to be great during the first and second cuttings. Overall, harvest interval had a large effect on nutritive value and a more significant effect on alfalfa dry matter yield than variety selection. Seeding rate did not affect alfalfa yield and nutritive value.

Effect of a fall cut on dry matter yield, nutritive value, and stand persistence of alfalfa

  • McDonald, Iryna;Min, Doohong;Baral, Rudra
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.799-814
    • /
    • 2021
  • Information is lacking about the effect of date of a fall cut of alfalfa (Medicago sativa L.) on dry matter yield (DMY), forage nutritive value, and stands persistence. The objective of this study was to determine the effect of timing of a fall cut on DMY, forage nutritive value and stand persistence of three alfalfa varieties: low-lignin Hi-Gest 360, Roundup Ready Tonica, and conventional Gunner in Northeastern Kansas in the United States. The field study was carried out by splitting plot in randomized complete block design with four replications. The harvesting data of different maturity stages were collected in each year from 2015 to 2018. Three cuts were harvested based on the stage of maturity, and the last (fourth) cut was done on September 15, September 30, October 15, and October 30 of each year. The persistence of the alfalfa stands was determined each fall after the last cut, and each spring after the first cut, by counting the number of live plants in a randomly placed quadrat in each plot. Alfalfa cut on September 15 and September 30 had a higher stand persistence compared to alfalfa cut on October 15 and October 30. The DMY of the first cut in 2016 was significantly higher in roundup ready than the low-lignin alfalfa variety. In the second cut, DMY was significantly higher in conventional alfalfa than the roundup ready. There were no significant differences in DMY between alfalfa varieties in the rest of seasonal cuttings in 2016 and 2017 and annual total yield in both years. In general, low lignin alfalfa variety had higher crude protein and relative feed value and lower acid detergent fiber and neutral detergent fiber contents than those in roundup ready and conventional alfalfa varieties. On average, nutritive value of alfalfa was generally affected by last cutting dates in 2017. Based on 3-year data the last cutting of alfalfa in the fall could be done by September 30-October 15 without harmful effect on DMY.

Harvesting schedule effects on forage yield and nutritive values in low-lignin alfalfa

  • Xu, Xuan;Min, Doohong
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.262-273
    • /
    • 2022
  • Under the four-cut system, low-lignin alfalfa (Medicago sativa L.) may extend harvesting intervals improving harvest management flexibility and producing forage products with higher nutritive values. The objective of this study was to compare forage yield and nutritive values of low-lignin and conventional alfalfa varieties when applied to six different harvest schedules in the first (2016) and second (2017) production years. There were 12 treatments of two alfalfa varieties as whole plots and six harvest schedules as subplots. Across harvest schedules, there were four cuttings in two production years. Three harvest intervals including "Standard" (high quality, HQ), "Standard+5-day" (medium quality, MQ), and "Standard+10-day" (high yield, HY) were chosen for the first cutting, and 30-day (HQ) and 35-day (HY) for the second cuttings. The third and fourth cuttings in 2016 were timed near final harvest date and in 2017 occurred at 35-day (MQ) and 40-day (HY). Variety by harvest schedule interaction was not significant, but the whole plot and sub-plot effects were significant. Hi-Gest 360 was consistently higher in nutritive value and with a similar yield as Gunner. Harvest schedules did not consistently differ in forage yield and nutritive values. HS-1 ("Standard" + 35-day + Medium Quality + High Yield) with shorter first two cutting intervals provided lower acid detergent fiber (ADF), neutral detergent fiber (NDF), higher relative feed value (RFV), and similar forage yield compared to other schedules. HS-1 had the highest economic incomes when considering RFV and yield among the six different harvest schedules.

Effects of alfalfa and alfalfa-grass mixtures with nitrogen fertilization on dry matter yield and forage nutritive value

  • McDonald, Iryna;Baral, Rudra;Min, Doohong
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.305-318
    • /
    • 2021
  • Alfalfa (Medicago sativa L.) is an important forage legume grown in Kansas, USA and its productivity with cool-season grasses however is unknown. The objective of this study was to determine the dry matter yield (DMY) and forage nutritive value of alfalfa-grass mixtures compared to those of alfalfa and grasses grown in monoculture with and without nitrogen fertilization. Three different alfalfa varieties were planted (reduced-lignin alfalfa, Roundup Ready, and conventional alfalfa) and two kinds of cool-season grasses (smooth brome, Bromus inermis Leyss, and tall fescue, Festuca arundinacea Schreb) were planted as a monoculture or in alfalfa-grass mixtures. Nitrogen fertilizer (urea) was applied at green-up at a rate of 56 kg/ha and after the second cutting at a rate of 56 kg/ha in 2016 and 2017, respectively. and control treatments received no nitrogen. DMY was significantly higher in monoculture alfalfa and alfalfa-grass mixtures than in grass monocultures. Between alfalfa monoculture and alfalfa-grass mixtures, no significant differences in DMY were found. For all treatments, nitrogen application significantly increased DMY compared to the control. In 2016 and 2017, the low-lignin alfalfa monoculture had the lowest acid detergent fiber (ADF) and the grass monocultures had the highest ADF. In 2016 and 2017, neutral detergent fiber (NDF) in smooth bromegrass and tall fescue was higher than in other species treatments. A low-lignin alfalfa monoculture had significantly lower NDF concentration compared to alfalfa-grass mixtures. When averaged over 2016 and 2017, relative feed value (RFV) was highest in low-lignin alfalfa and lowest in the grass monocultures. In both years, nitrogen fertilizer application did not affect nutritive values.

Determining the Cutting Time for Maximum Yield and Quality of Alfalfa Swards (Alfalfa 단파초지의 최고생산과 질적향상을 위한 예취적기의 결정)

  • Chang, Nam-Kee;Yun, Ik-Suk;Yook, Wan-Bang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.4 no.1
    • /
    • pp.28-34
    • /
    • 1983
  • The cutting schedule for the maximum yield of DM and quality was applied to alfalfa swards. Harvesting at the cutting time for the maximum total yield to (Chang 1971) was selected as the criterion which provided the highest DM yield in accordance with high consistent levels of CP and IVD as well as persistance of the species in the pure stands. On the same theoretical basis, ceiling LAI and 25% bloom stages proved most satisfactory for harvesting pure stands of alfalfa.

  • PDF

Growth and Yield of Introduced Alfalfa(Medicago sativa L.) Cultivars in Korea (도입 Alfalfa(Medicago sativa L.) 품종의 생육 및 수량)

  • 김무성;김용민
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.1
    • /
    • pp.48-54
    • /
    • 1989
  • This study was conducted to select the best adapted alfalfa cultivars among 32 introduced alfalfa cultivars in the Korean environmental condition. Plant height and dry matter yield per cultivar were determined. On the point of plant height, seven high ranked cultivars among the 32 alfalfa cultivars in high order were Diamond> Milkmaker> Arrow>Chalienger>Sapphire > Dekalb brand 135> LS-1920. and seven low ranked cultivars in low order were Pioneer brand 5929> Maxidor> Dekalb brand 167> Pierce> Blazer> Raidor> Pioneer brand 532. Seven high ranked cultivars from 32 alfalfa cultivars on the dry matter yield in high order were Pike>LS-1920>Challenger>Salute>Diamond>Decathlon>Pioneer brand 581, and seven low ranked cultivars in low order were Maxidor>Pioneer brand 5929>Pioneer brand 532>Florida 77> Pierce> Magnum> Blazer. Dry matter yield per cultivar was also greater when alfalfa cultivar was appeared higher plant height compared with those which were lower plant height. Leading cultivars for plant growth and yield under the Korean environmental condition were Pike, LS-1920, Challenger, Salute, Diamond among the 32 alfalfa cultivars. All those cultivars except Challenger cultivar are Semi-dormant which can be well grown under moderate temperatures.

  • PDF

Changes in Nutrients Uptake and Dry Matter Yield of Orchardgrass ( Dactylis glomerata L. ) and Alfalfa ( medicago sativa L. ) by Gypsum Application. (석고시용이 Orchargrass ( Dactylis glomerata L. ) 와 Alfalfa ( Medicago sativa L. )의 양분흡수 및 목초수량에 미치는 영향)

  • 윤순강;송기웅;김재규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.3
    • /
    • pp.141-146
    • /
    • 1990
  • Changes in dry matter yield, crude components, nutrients uptake($P_2O_5$, $K_2O$, CaO, MgO) and sulphur containing amino acid(cysteine, methionine) of orchardgrass(Dacty1is glomerata. L) and alfalfa(A4edicago sativa. L) by gypsum application(as sulphur source, 0, 2. 5, 10, 20kg SIlOa) were investigated to understand the effect of sulphur on herbage production in pasture, which was established in 1987 as means of hand broadcasting. The effect of gypsum on dry matter yield at different cutting times during growing seasons has not been found both in orchardgrass and in alfalfa, but in respect to annual total dry matter yield there were increment in herbage yield (P<0.05) of alfalfa at 5, 10, 20kg SIlOa in 1989 and the amounts of sulphur taken up in herbage slightly increased according to the rates of gypsum application. Maximum apparent recovery of sulphur was 7.55% at 2kg SIlOa in orchardgrass and was 17.8% at 5kg S/lOa in alfalfa. There were no any great differences in the content of crude components of both species and this trend was similar with the mineral contents of orchardgrass. But in alfalfa, the amounts of $K_2O$, CaO, and $P_2O_5$ taken up were increased by gypsum application and the increment in the amounts of minerals taken up in herbage at 20kg SIlOa were 14.9 of $K_2O$, 9.1 of CaO, and 2.5kgIlOa of $P_2O_5$ as compared to those of at untreated plot. Cysteine and methionine were not influenced by gypsum applicaton not only in orchardgrass but also cysteine in alfalfa, however, the content of methionine in alfalfa was slightly increased at 2, 5, lOkg SIlOa and at 20kg SIlOa was reverse.

  • PDF

Effect of Sowing Date on Growth Characteristics and Dry Matter Yield of Alfalfa in a Dry Paddy Field

  • Lee, Bae Hun;Lee, Ki Won;Kim, Ji Hye;Lee, Se Young;Chang, Hyoung Ki;Park, Hyung Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.169-175
    • /
    • 2022
  • This study aimed to examine the changes in dry matter yield and growth characteristics of alfalfa (Medicago sativa L.) in response to variations in sowing dates during the autumn season of 2021-22 in a dry paddy field of Chilbo-myeon, Jeongeup-si, Jeollabuk-do. Treatments comprised four sowing dates at 10-day intervals, i.e., October 8, October 18, October 28, and November 8, 2021. The winter survival rate of alfalfa showed a significant difference between different treatments but was at a satisfactory level for all (p<0.05). The winter survival rate for the fourth sowing date, a month later than the first sowing date, was approximately 11.7% lower than that for the first sowing date. The plant height ranged between 82.3-93.1 cm and 60.5-63.7 cm at the first and second harvest, respectively, smaller at the second harvest than at the first harvest. The total dry matter yield of alfalfa was the highest at 13,316 kg/ha for the first sowing date, and the later the sowing date, the lower the dry matter yield. The protein content of alfalfa ranged between 13.6-17.3% in the first harvest, lower than the standard alfalfa protein content of 20% or more. In relative feed value, the first sowing (Oct. 8) was the most significantly higher in the first harvest (p<0.05). These results suggest that the early and mid-October sowing dates are optimum for sowing alfalfa during autumn and result in improved plant growth, dry matter yield, protein content, and winter survival compared to those at later sowing dates. Therefore, dry paddy fields can be safely employed for alfalfa cultivation with sowing dates in early and mid-October during autumn.

Effect of Cutting Height on Productivity and Forage Quality of Alfalfa in Alpine Area of Korea

  • Kim, Hak Jin;Li, Yan Fen;Jeong, Eun Chan;Ahmadi, Farhad;Kim, Jong Geun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.147-154
    • /
    • 2021
  • Cutting management has been identified as a critical factor in the alfalfa production systems because it has a significant impact on maximizing yield and maintaining the forage quality. The objective of this experiment was to determine the proper cutting height according to harvesting time for optimizing nutrient yield and forage nutritive quality of alfalfa grown in alpine regions of Korea. Alfalfa was sown at a seeding rate of 30 kg/ha in August 2018 and harvested at four cuttings in 2019 (3 May, 2 July, 11 September, and 13 October). Cutting heights were adjusted at 5, 15, and 25 cm above the soil surface. Alfalfa plant was tallest at the third cutting (109 cm), which was on average 35 cm taller than the first or second cutting. Relative feed value (RFV) remained unaffected by cutting height at the first harvest, but increased consistently in subsequent harvests as cutting height increased. Alfalfa collected at the first and fourth cuttings had the highest RFV (mean 152), which was on average 8 and 67 units higher than the second and third harvests, respectively. At each harvest, in vitro dry matter digestibility was highest in alfalfa cut at a 25-cm height. Dry matter (DM) production at each cutting height was highest in the first cutting, accounting for on average 36-37% of total annual DM production, and lowest in the fourth harvest, accounting for about 11-13% of the total DM yield. The total dry matter production (in four harvests) was 4,218 kg/ha higher when alfalfa was subjected to a cutting height of 5 cm rather than 25 cm. Cutting height had no effect on total crude protein yield, but from the first to fourth cutting, the protein yield followed a decreasing trend. Finally, there were visible declines in forage nutritive quality when alfalfa was cut at a shorter height. However, the magnitude of difference in total forage yield may outweigh the slight decline in forage quality when alfalfa is cut at a lower height. The findings of this study could help the alfalfa growers make better harvest management decisions.