• 제목/요약/키워드: Alexa-488

검색결과 4건 처리시간 0.016초

전기막 시스템에서 유속과 농도에 따른 형광염료의 농축 및 전기영동 이동도에 관한 연구 (Studies on Preconcentration and Electrophoretic Mobility of Fluorescent Dyes Depending on Flow Velocity and Concentration in the Electromembrane System)

  • 김민성;김범주
    • 공업화학
    • /
    • 제34권1호
    • /
    • pp.45-50
    • /
    • 2023
  • 마이크로 유체 시스템을 활용한 농축 기술은 저과다 분석물을 특정 위치에 모으거나 추출하는 기술로, 의료 및 바이오 분야를 포함한 다양한 분야에서 필수적인 기술로 각광받고 있다. 본 연구에서는 이온교환막을 활용한 전기막 시스템(electromembrane system)에서 전기영동(electrophoresis) 현상을 이용해 타겟 샘플을 농축할 때 고려해야 할 변수에 대한 광범위한 연구를 수행하였다. 가시화가 용이한 형광염료로 음전하를 띄는 Alexa Fluor 488과 양전하를 띄는 Rhodamine 6G을 샘플로 사용하여, 타겟 샘플이 포함된 메인 채널의 유속과 메인/버퍼 채널의 농도, 전압 등이 샘플 농축에 어떻게 영향을 끼치는지 알아보았다. 실험 결과, 메인/버퍼 채널 농도비가 같을 경우, 유속이 느릴수록, 샘플이 포함된 메인 채널의 농도가 높을수록, 타겟 샘플의 농축이 훨씬 더 잘 일어난다는 사실을 알 수 있었다. 또한 본 연구를 통해 Alexa Fluor 488과 Rhodamine 6G의 전기영동 이동도 값을 실험적으로 계산하여 비교하였다.

High-Efficiency Generation of Monoclonal Antibody for Vitreoscilla Hemoglobin Protein

  • Kim, Eun-Mi;Kim, Myung-Hee;Kim, Min-Gon;Kim, Sang-Woo;Ro, Hyeon-Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권2호
    • /
    • pp.226-229
    • /
    • 2012
  • Bacterial hemoglobin from Vitreoscilla (VHb) is recognized as a good fusion protein for the soluble expression of foreign protein. In this study, we generated a monoclonal antibody (MAb) against VHb for its detection. For the rapid screening of MAb, a protein chip technology based on the Alexa-488 (A488) dye labeling method was introduced. In order to fabricate the chip, the VHb protein was chemically coupled to the chip surface and then the culture supernatants of 84 hybridoma cell lines were spotted onto the VHb chip. The bound MAbs were measured by A488-modified anti-mouse IgG. A single spot (MAb A10) exhibited significantly high signal intensity. The immunoblot analysis evidenced that the MAb A10 can detect VHb-fused proteins with high specificity.

Single-Protein Molecular Interactions on Polymer-Modified Glass Substrates for Nanoarray Chip Application Using Dual-Color TIRFM

  • Kim, Dae-Kwang;Lee, Hee-Gu;Jung, Hyung-Il;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권5호
    • /
    • pp.783-790
    • /
    • 2007
  • The immobilization of proteins and their molecular interactions on various polymer-modified glass substrates [i.e. 3-aminopropyltriethoxysilane (APTS), 3-glycidoxypropyltrimethoxysilane (GPTS), poly (ethylene glycol) diacrylate (PEG-DA), chitosan (CHI), glutaraldehyde (GA), 3-(trichlorosilyl)propyl methacrylate (TPM), 3'-mercaptopropyltrimethoxysilane (MPTMS), glycidyl methacrylate (GMA) and poly-l-lysine (PL).] for potential applications in a nanoarray protein chip at the single-molecule level was evaluated using prismtype dual-color total internal reflection fluorescence microscopy (dual-color TIRFM). A dual-color TIRF microscope, which contained two individual laser beams and a single high-sensitivity camera, was used for the rapid and simultaneous dual-color detection of the interactions and colocalization of different proteins labeled with different fluorescent dyes such as Alexa Fluor® 488, Qdot® 525 and Alexa Fluor® 633. Most of the polymer-modified glass substrates showed good stability and a relative high signal-to-noise (S/N) ratio over a 40-day period after making the substrates. The GPTS/CHI/GA-modified glass substrate showed a 13.5-56.3% higher relative S/N ratio than the other substrates. 1% Top-Block in 10 mM phosphate buffered saline (pH 7.4) showed a 99.2% increase in the blocking effect of non-specific adsorption. These results show that dual-color TIRFM is a powerful methodology for detecting proteins at the single-molecule level with potential applications in nanoarray chips or nano-biosensors.

Anticancer Effects of Curcuma C20-Dialdehyde against Colon and Cervical Cancer Cell Lines

  • Chaithongyot, Supattra;Asgar, Ali;Senawong, Gulsiri;Yowapuy, Anongnat;Lattmann, Eric;Sattayasai, Nison;Senawong, Thanaset
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6513-6519
    • /
    • 2015
  • Background: Recent attention on chemotherapeutic intervention against cancer has been focused on discovering and developing phytochemicals as anticancer agents with improved efficacy, low drug resistance and toxicity, low cost and limited adverse side effects. In this study, we investigated the effects of Curcuma C20-dialdehyde on growth, apoptosis and cell cycle arrest in colon and cervical cancer cell lines. Materials and Methods: Antiproliferative, apoptosis induction, and cell cycle arrest activities of Curcuma C20-dialdehyde were determined by WST cell proliferation assay, flow cytometric Alexa fluor 488-annexin V/propidium iodide (PI) staining and PI staining, respectively. Results: Curcuma C20 dialdehyde suppressed the proliferation of HCT116, HT29 and HeLa cells, with IC50 values of $65.4{\pm}1.74{\mu}g/ml$, $58.4{\pm}5.20{\mu}g/ml$ and $72.0{\pm}0.03{\mu}g/ml$, respectively, with 72 h exposure. Flow cytometric analysis revealed that percentages of early apoptotic cells increased in a dose-dependent manner upon exposure to Curcuma C20-dialdehyde. Furthermore, exposure to lower concentrations of this compound significantly induced cell cycle arrest at G1 phase for both HCT116 and HT29 cells, while higher concentrations increased sub-G1 populations. However, the concentrations used in this study could not induce cell cycle arrest but rather induced apoptotic cell death in HeLa cells. Conclusions: Our findings suggest that the phytochemical Curcuma C20-dialdehyde may be a potential antineoplastic agent for colon and cervical cancer chemotherapy and/or chemoprevention. Further studies are needed to characterize the drug target or mode of action of the Curcuma C20-dialdehyde as an anticancer agent.