• Title/Summary/Keyword: Alcyonacea

Search Result 13, Processing Time 0.021 seconds

Nucleotide Sequence of ${\beta}-tubulin$ Gene from the Soft Coral Scleronephthya gracillimum $(K\ddot{u}kenthal)$

  • Yum, Seung-Shic;Woo, Seon-Ock;Chang, Man;Lee, Taek-Kyun;Song, Jun-Im
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.55-59
    • /
    • 2005
  • We cloned the complete cDNA of the ${\beta}-bubulin$ from the soft coral, Scleronephthya gracillimum $(K\ddot{u}kenthal)$ (Alcyonacea, Octocorallia, Anthozoa, Cnidaria), via the random sequencing of a cDNA library and the 5'-rapid amplification of cDNA end (RACE) technique. The full-length cDNA of the S. gracillimum ${\beta}-tubulin$ comprised 1541 bp, not including the poly $A^+$ stretch, also contained a complete open reading frame, which codes for a total of 445 amino acids. The amino acid residues 16402 appeared to be in a state of conservation in a variety of animals. Northern blot analysis clearly demonstrated that the sequence we have obtained is, indeed, the full-length cDNA of the ${\beta}-bubulin$ gene in S. gracillimum.

Phylogenetic Analysis of the Genus Dendronephthya (Nephtheidae, Alcyonacea) Based on Internal Transcribed Spacer Sequences of Nuclear rDNA

  • Lee, Young-Ja;Song, Jun-Im
    • Animal cells and systems
    • /
    • v.4 no.4
    • /
    • pp.319-324
    • /
    • 2000
  • Species boundaries among the Alcyonacean soft coral, the genus Dendronephthya, are often obscured by inter- and intraspecific morphological variations. In the present study, we attempted to infer the genetic relationships of eight dendronephthians based on their molecular characters, the internal transcribed spacer (ITS) regions of ribosomal DNA, and then compared this result together with the random amplified polymorphic DNA (RAPD) data from our previous investigation. Dendronephthya. putteri and D. suensoni formed a divaricate form - VI grade specific clade, whereas D. castanea, D. gigantea, D. aurea and D. spinifera, formed a umbellate and glomerate form - IV and III grade specific clade. Therefore, we confirmed that the main characters the growth form and the anthocodial grade and formula, are important in identification of the species in dendronephthians despite some problems. Also, the relationships of the growth form are clarified as the glomerate form is much closer to the umbellate form than to the divaricate form based on two sets of independent molecular data. However, we cannot determine the molecular markers which limit the species boundaries among this genus with ITS sequences.

  • PDF

Systematic Relationships among Species of the Genus Dendronephthya (Alcyonacea: Octocorallia; Anthozoa) Based on RAPD Analysis

  • Song, Jun-Im;Lee, Young-Ja
    • Animal cells and systems
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • The genus Dendronephthya, generally known as soft corals, is reported as an abundant and variable taxon. They mostly distribute in warmer waters of the Undo-Pacific Ocean region including Korea. In spite of their abundance and ecological importance as habitats of marine organisms, there are difficulties in the study of their identification and systematics because they have morphological variabilities and limited taxonomec characters. To resolve the problems, we attempted to elucidate the genetic relationships in the genus Dendronephthya by using random amplified polymorphic DNA (RAPD) analysis. This study was based on eight dendronephthian species and one Alcyoniidae species, Alcyonium gracillimum, as an outgroup. The results from all analysis suggest that they could be classified into four groups by the growth form and the anthocodial grades as follows: the first one,D. putteri and D. suensoni with the divaricate form and VI grade; the second one,D. sp.1 and D. sp.2 with the divaricate form and III or IV grade; the third one, D. gigantea and D. aurea being closer than D. spinifera with the glomerate form and III grade; the last one, D. castanea related to D. gigantea rather than D. putteri with the umbellate form and IV grade. Moreover, the divaricate form was separated from the group of the glomerate and umbellate form. At the intraspecies level, the types of the D. castanea, D. gigantea and D. spinifera were separated depending on the feature of spicules in the polyp head, and the coloration could not influence genetic variation. From this study, we can confirm that their morphological characters are compatible with the genetic variation, also RAPD analysis is a very useful method for resolving the systematic relationships of den-deonephthians.

  • PDF