• Title/Summary/Keyword: Alcohol Fuel

Search Result 120, Processing Time 0.024 seconds

Poly(vinyl alcohol) Membranes Containing Sulfonic Acid Groups for Direct Methanol Fuel Cell Application (설폰산기를 함유한 PVA막의 직접 메탄올 연료전지 응용)

  • Lee Young Moo;Lee Sun Yong
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.240-249
    • /
    • 2004
  • Crosslinked PVA membranes were achieved by esterification between the hydroxyl groups of PVA and carboxyl group of sulfosuccinic acid (SSA). SSA containing sulfonic group was used as a chemical crosslinking agent as well as a donor of fixed anionic group ($-SO_3$H). The crosslinking density of membranes was controlled by SSA content and calculated using polar and non-polar solvent. The crosslinking density measured by using non-polar solvent such as xylene and benzene increases with SSA content. However, using the polar solvent such as water and methanol, the crosslinking density increases up to SSA content of 20 wt% and above the content decrease due to sulfonic acid groups. The crosslinked PVA membranes were studied in relation with water diffusion coefficient and mechanical property as well as proton conductivity and methanol permeability as a function of crosslinking density. These properties were all dependent on the effect of SSA content.

Thermal Stability Improvement of Liquid Fuel by Using Some Additives (첨가제를 이용한 액체연료의 열안정성 향상)

  • Park, Sun-Hee;Kim, Joong-Yeon;Chun, Byung-Hee;Han, Jeong-Sik;Jeong, Byung-Hun;Kim, Sung-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.48-53
    • /
    • 2011
  • We investigated thermal stability improvement of exo-tetrahydrodicyclopentadiene (exo-THDCP) with thermal stabilizers (additives). The reaction products were sample during the reactions. The compositions of products were determined by gas chromatography-mass spectrometry (GC-MS) to measure thermal decomposition products of exo-THDCP and to specify mechanism for thermal stabilizers. Hydrogen donors (thermal stabilizers) such as 1,2,3,4-tetrahydroquinoline (THQ), benzyl alcohol (BnOH) increased thermal stability of exo-THDCP. These materials donated hydrogen to radical of exo-THDCP produced after initiation of exo-THDCP. We found that stabilization of exo-THDCP radicals decreased activity of primary products of exo-THDCP and lowered formation of secondary products (above-$C_{11}$ products).

The Fermentation Characteristics of Newly Selected Thermotolerant Yeasts at High Temperature

  • Sohn, Ho-Yong;Park, Wan;Jin, Ing-Nyol;Seu, Jung-Hwn
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.222-229
    • /
    • 1994
  • In order to develop a method of economical production and to reduce energy-consumption in fuel alcohol production, we investigated the fermentation characters of two newly selected thermotolerant yeasts. The RA-74-2 showed stable and superior fermentability between 30 and $40^{\circ}C$ in 20% glucose media in comparison to the industrial strains. The optimum concentration of glucose for economical fermentation at $40^{\circ}C$ was 15-18%, and organic nitrogen was necessary for a satisfactory fermentation. The optimum pH was 4.0 and aeration was adversed for high temperature fermentation. Agitation was an important factor at $40^{\circ}C$ and the addition of magnesium ion 0.2% was required in this experiment. When the inoculum was increased, ethanol productivity as well as the speed of fermentation increased. On the other hand RA-912, which can grow at $48^{\circ}C$, showed similar fermentability between 30-$45^{\circ}C$ in 20% glucose media As the concentration of substrate decreased, fermentation ratio increased at $45^{\circ}C$ (45%, 65%, 95% fermentation ratio in 20%, 15%, 10% glucose media, respectively). Also, requirement of organic nitrogen and magnesium ion in RA-912 was similar in RA-74-2. The optimum pH for fermentation was 5.0, and the effects of agitation were enhanced at $37^{\circ}C$ than at $45^{\circ}C$. As the inoculum was increased, fermentation speed became more enhanced but the ethanol productivity was less affected. RA-912 showed fermentability with various substrates. Among the substrates used, inulin was the most promising substrate for the high-temperature fermentation. When 14.5% inulin was used as the substrate, 93% and 55% fermentation ratios were shown at $37^{\circ}C$ and $45^{\circ}C$, respectively.

  • PDF

Thermal Stability Improvement of Liquid Fuel by Using Some Additives (첨가제를 이용한 액체연료의 열안정성 향상)

  • Park, Sun-Hee;Kim, Joong-Yeon;Chun, Byung-Hee;Han, Jeong-Sik;Jeong, Byung-Hun;Kim, Sung-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.294-299
    • /
    • 2010
  • Thermal stability of exo-tetrahydrodicyclopentadiene (exo-THDCP) were investigated in a batch-type reactor perfectly coated with quartz. The 1 ml liquid product, which was a sufficiently small amount so as not to affect the reaction pressure, was sampled at 90 min intervals during the reaction and determined by gas chromatography-mass spectrometry (GC-MS) to measure thermal decomposition products of exo-THDCP and specify mechanism for additives (thermal stabilizer). Hydrogen donors (thermal stabilizer) such as 1,2,3,4-tetrahydroquinoline (THQ), benzyl alcohol (BnOH) increased thermal stability of exo-THDCP. These materials donated hydrogen to radical of exo-THDCP produced after initiation of exo-THDCP to decrease activity of primary products of exo-THDCP.

  • PDF

Influence of Silica Content in Crosslinked PVA/PSSA_MA/Silica Hybrid Membrane for Direct Methanol Fuel Cell (DMFC)

  • Kim, Dae-Sik;Guiver, Michael D.;Seo, Mu-Young;Cho, Hyun-Il;Kim, Dae-Hoon;Rhim, Ji-Won;Moon, Go-Young;Nam, Sang-Yong
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.412-417
    • /
    • 2007
  • In the present study, crosslinked poly(vinyl alcohol) (PVA) membranes were prepared at different temperatures using poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA) (PVA:PSSA_MA = 1:9). The hybrid mem-branes were prepared by varying the TEOS content between 5 and 30 wt%. The PSSA_MA was used both as a crosslinking agent and the hydrophilic group donor ($-SO_3H$ and/or-COOH). The proton conductivity increased with up to 20 wt% TEOS, but decreased above this level, although the water content decreased with increasing TEOS content. This result suggests that the silica doped into the membrane improved the formation of proton-conduction pathways due to the absorption of molecular water. The PVA/PSSA_MA/Silica containing TEOS 20% showed both high proton conductivity (0.026 S/cm at $90^{\circ}C$) and low methanol permeability ($5.55{\times}10^{-7}cm^2/s$).

Preparation and Characterization of the Impregnation to Porous Membranes with PVA/PSSA-MA/THS-PSA for Fuel Cell Applications (연료전지 응용을 위한 다공성막에 가교된 PVA/PSSA-MA/THS-PSA의 함침을 통한 고내구성 이온교환막의 제조 및 특성 연구)

  • Kim, Il-Hyoung;Kim, Sung-Pyo;Lee, Hak-Min;Park, Chan-Jong;Rhim, Ji-Won;Cheong, Seong-Ihl
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.299-305
    • /
    • 2011
  • This study deals with the preparation of polymeric electrolyte membranes having high durability for the application of fuel cells. The membranes under investigation were prepared the impregnation to porous polyethylene membranes with poly(vinyl alcohol)(PVA), poly(styrene sulfonic acid-co-maleic acid), and (PSSA-MA)3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA). To characterize the resulting membranes, the water contents, the contact angles, FT-IR, the proton conductivity and the the modulus were measured. The proton conductivity of 30% content of THS-PSA at $55^{\circ}C$ gave excellent $1.27{\times}10^{-1}S/cm$ and the mechanical strength was improved 7 times higher up to the THS-PSA content 15%, as a result, the durability was elevated extensively.

Aging Effect of Poly(vinyl alcohol) Membranes Crosslinked with Poly(acrylic acid-co-maleic acid)

  • Rhim Ji Won;Hwang Ho Sang;Kim Dae Sik;Park Ho Bum;Lee Chang Hyun;Lee Young Moo;Moon Go Young;Nam Sang Yong
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.135-140
    • /
    • 2005
  • Poly(vinyl alcohol) (PVA) membranes crosslinked with poly(acrylic acid-co-maleic acid) (PAM) were prepared to investigate the effect of aging on their morphology by swelling them for up to 7 days. PAM was used both as a crosslinking agent and as a donor of the hydrophilic-COOH group. A $30 wt\%$ weight loss of the dry membrane was observed in the swelling test after 6 days. The surface of the membrane was dramatically changed after the swelling test. The surface roughness of the PVA/PAM membrane was increased, as determined by atomic force microscopy (AFM). The swelling loosened the polymer structure, due to the release of the unreacted polymer and the decomposition of the ester bond, thereby resulting in an increase in the free volume capable of containing water molecules. The water molecules present in the form of free water were determined by differential scanning calorimetry (DSC). The fraction of free water increased with increasing swelling time. The swelling of the membrane may provide space for the transport of protons and increase the mobility of the protonic charge carriers. The proton conductivity of the membranes measured at T= 30 and $50^{\circ}C$ was in the range of $10^{-3} to 10^{-2} S/cm$, and slightly increased with increasing swelling time and temperature.

SELF-PREPARATION OF BATHYTHERMOGRAPH SMOKED-GLASS SLIDE (Bathythermograph Smoked-glass slide의 간역제작법)

  • HUE Jong Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.135-137
    • /
    • 1968
  • Bathythermograph (B. T) has been coumonly used to obtain a records of water temperature in the depth of 270m from the surface. We have, however, experienced some difficulties in obtaining smoked or coated glass which is used for the bathythermograph in this region, Therefore I introduce a easy method of preparing the smoked-glass slide. Preparing method is as follows. 1. Glass slides must be cleaned by dipping into the concentrated solution of sodium hydroxide ana hydrochloric acid then rinsing with hot water and polishing with a clean gauge. 2. The cleaned slide is immersed in the wax solution for coating, and dried on the filter paper. The Wax solution is prepared as follow : 1g of white wax is dissolved in 200CC of benzol or 1g of lard is dissolved in 300CC of gasoline. 3. A slide held in a fingertip is smoked on the flame of alcohol lamp, or Meter burner. When alcohol lamp is used the fuel alcohol must contain 1/5 of benzol, and when Meker burner is used, the air intake must be blocked up. The smoking on the glass slide should be light and uniform, after smoking the slide is cooled down. 4. The smoked glass slide is again dipped into the wax solution using a fingertip and the excessive wax solution on the slide is absorbed on the filter paper and drain off. 5. Thus prepared smoked slide can be used for B.T.

  • PDF

Studies on the Preparation and Characterization of PVA Based Cation-exchange Membranes for DMFC Application (직접 메탄올 연료전지 적용을 위한 PVA 기반 양이온교환막 제조 및 특성연구)

  • Jeon, Yi Seul;Kim, Ka young;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.144-151
    • /
    • 2015
  • The water-soluble poly(vinyl alcohol) membranes with the addition of sulfosuccinic acid (SSA) were prepared and to assign the ion exchange capacity, poly(4-styrene sulfonic acid-co-maleic acid) (PSSA_MA) was added to PVA according to PSSA_MA contents of 70, 80 and 90 wt%. To characterize the resulting membranes, FT-IR, water contents, ion exchange capacity, proton conductivity and methanol permeability were measured. As PSSA_MA contents increased, water contents, ion exchange capacity, proton conductivity increased, but methanol permeability decreased. From these results, the best preparation component was known as PVA10/SSA9/PSSA_MA80.

Catalytic Oxidoreduction of Pyruvate/Lactate and Acetaldehyde/Ethanol Coupled to Electrochemical Oxidoreduction of $NAD^+$/NADH

  • Shin, In-Ho;Jeon, Sung-Jin;Park, Hyung-Soo;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.540-546
    • /
    • 2004
  • We deviced a new graphite-Mn(II) electrode and found that the modified electrode with Mn(II) can catalyze NADH oxidation and $NAD^+$ reduction coupled to electricity production and consumption as oxidizing agent and reducing power, respectively. In fuel cell with graphite-Mn(II) anode and graphite-Fe(III) cathode, the electricity of 1.5 coulomb (A x s) was produced from NADH which was electrochemically reduced by the graphite-Mn(II) electrode. When the initial concentrations of pyruvate and acetaldehyde were adjusted to 40 mM and 200 mM, respectively, about 25 mM lactate and 35 mM ethanol were produced from 40 mM pyruvate and 200 mM acetaldehyde, respectively, by catalysis of ADH and LDH in the electrochemical reactor with $NAD^+$ as cofactor and electricity as reducing power. By using this new electrode with catalytic function, the bioelectrocatalysts are engineered; namely, oxidoreductase (e.g., lactate dehydrogenase) and $NAD^+$ can function for biotransformation without electron mediator and second oxidoreductase for $NAD^+$/NADH recycling.