• Title/Summary/Keyword: Alcaligenes sp.

Search Result 58, Processing Time 0.023 seconds

Isolation and Identification of Pentachlorophenol-degrading Bacteria (Pentachlorophenol을 분해하는 세균의 분리와 동정)

  • Park, Young-Doo;Eum, Jin-Seong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.4
    • /
    • pp.261-265
    • /
    • 2000
  • To develope the enhanced bacterial strains capable of biodegradation for various chlorinated aromatic compounds, 100 bacterial strains were isolated from soil samples of suburbs of Taejon, Cheongju, and Jeonju by the enrichment culture. These strains can degrade pentachlorophenol (PCP) which is a kind of wood preservatives. Nineteen strains of the isolates were selected by fast colony-forming rate on solid minimal media containing PCP as an only source of carbon and energy. These strains were identified to genus level. Fifteen strains were identified as Pseudomonas, 1 strain as Acinetobacter and 3 strains were not. Genus Alcaligenes strains were not found among them. Pseudomonas sp. MU135. MU139, MU163 and MU 184 were able to degrade for 4 kinds of chlorinated compounds, PCP, 2,4-D, MCPA and 3CB. Pseudomonas sp. If was observed that MU139 exhibits the highest degradability in liquid minimal media at 72 hours after inoculation. Pseudomoans sp. MU147, MU177, MU184 and MU192 also degraded the compounds at higher rates. As the results, Pseudomonas sp. MU139 and unidentified strain MU184 had biodegrability for broad range of chlorinated compounds and higher rates of degradation for PCP.

  • PDF

Molecular Characteristics of Pseudomonas rhodesiae Strain KK1 in Response to Phenanthrene

  • Kahng, Hyung-Yeel;Nam, Kyoung-Phile
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.729-734
    • /
    • 2002
  • Radiorespirometric analysis revealed that Pseudomonas sp. strain KKI isolated from a soil contaminated with petroleum hydrocarbons was able to catabolize polycyclic aromatic hydrocarbons such as phenanthrene and naphthalene. The rate and extent of phenanthrene mineralization was markedly enhanced when the cells were pregrown on either naphthalene or phenanthrene, compared to the cells grown on universal carbon sources (i.e., TSA medium). Deduced amino acid sequence of the Rieske-type iron-sulfur center of a putative phenanthrene dioxygenase (PhnAl) obtained from the strain KKI shared significant homology with DxnAl (dioxin dioxygenase) from Spingomonas sp. RW1, BphA1b (biphenyl dioxygenase) from Spingomonas aromaticivorans F199, and PhnAc (phenanthrene diokygenase) from Burkholderia sp. RP007 or Alcaligenes faecalis AFK2. Northern hybridization using the dioxygenase gene fragment cloned from KKI showed that the expression of the putative phn dioxygenase gene reached the highest level in cells grown in the minimal medium containing phenanthrene and $KNO_3$, and the expression of the phn gene was repressed in cells grown with glucose. In addition to the metabolic change, phospholipid ester-linked fatty acids (PLFA) analysis revealed that the total cellular fatty acid composition of KKI was significantly changed in response to phenanthrene. Fatty acids such as 14:0, 16:0 3OH, 17:0 cyclo, 18:1$\omega$7c, 19:0 cyclo increased in phenanthrene-exposed cells, while fatty acids such as 10:0 3OH, 12:0, 12:0 2OH, 12:0 3OH, 16:1$\omega$7c, 15:0 iso 2OH, 16:0, 18:1$\omega$6c, 18:0 decreased.

Development of Biofilter for Reducing Offensive Odor from Pig House (돈사 악취 저감을 위한 바이오필터 개발)

  • Lee, Seung-Joo;Lim, Song-Soo;Chang, Dong-Il;Chang, Hong-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.386-390
    • /
    • 2005
  • This study was conducted to develop the biofilter fur reducing ammonia $(NH_3)$ and hydrogen sulfide $(H_2S)$ gas emission from a pig house. A biofilter was designed and constructed by a type of squeeze air into the column type of air flow upward. Its column size was ${\Phi}260{\times}360mm$. It was used pressure drop gauge, turbo blower, air temperature, velocity sensor and control program that was programed by LabWindows CVI 5.5. Mixing materials were consisted with composted pine tree bark and perlite with 7:3 ratio (volume). The biofilter media inoculated with ammonia (Rhodococcus equi A3) and hydrogen sulfide (Alcaligenes sp. S5-5.2) oxidizing microorganisms was installed in a commercial pig house to analyzed the effectiveness of biogas removal for 10 days. Removal rates of ammonia and hydrogen sulfide gases were 90.8% and 81.5%, respectively. This result suggests that the pine compost-perlite mixture biofilter is effective and economic for reducing ammonia ana hydrogen sulfide gases.

Effect of Biofilter Made of Composted Pine Tree Bark and Perils on Reducing Odor from Pig House (부숙수피-펄라이트 혼합충전재의 돈사악취 제거 효과)

  • Lee, Seung-Joo;Chang, Dong-Il;Chang, Hong-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.118-123
    • /
    • 2006
  • To remove effectively order component ($NH_3\;and\;H_2S$) from pig house, biofilter was made of composted pine tree bark and polite and odor removal efficiency was evaluated in the lab and pilot scales. The columns were designed with ${\Phi}120mm{\times}450mm$ (H) and ${\Phi}850mm{\times}900mm$ (H) in the size in the lab and pilot scale testes, respectively. Single material of composted pine tree bark and polite and the mixture of two materials with 7:3 ratios (vol/vol) were packed in the column, and, herein air flow was controlled upward direction from column bottom. To enhance the efficiency of biofilter, ammonia (Rhodococcus equi A3) and hydrogen sulfide oxidizing bacteria (Alcaligenes sp. S5-5.2) were inoculated in packing materials before the test Removal effect of ammonia and hydrogen sulfide gases were higher in the mixture$[88.7{\sim}98.2%,\;89.5{\sim}97.9%]$ than that in single packing material (composted pine tree haft$[89.4{\sim}98.7%,\;78.7{\sim}85.6%]$ and petite$[65.3{\sim}73.2%,\;88.7{\sim}98.2%]$ by the lab scale biofilter. In the modeled pig house, about 96 and 91% of ammonia and hydrogen sulfide gases were removed by the pilot scale of biofilter, respectively. Conclusively, composted pine tree bark and polite could be a good candidate of biofilter packing materials to remove the odor components.

Enrichment of $CO_2$-Fixing Bacteria in Cylinder-Type Electrochemical Bioreactor with Built-In Anode Compartment

  • Jeon, Bo-Young;Jung, Il-Lae;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.590-598
    • /
    • 2011
  • Bacterial assimilation of $CO_2$ into stable biomolecules using electrochemical reducing power may be an effective method to reduce atmospheric $CO_2$ without fossil fuel combustion. For the enrichment of the $CO_2$-fixing bacteria using electrochemical reducing power as an energy source, a cylinder-type electrochemical bioreactor with a built-in anode compartment was developed. A graphite felt cathode modified with neutral red (NR-graphite cathode) was used as a solid electron mediator to induce bacterial cells to fix $CO_2$ using electrochemical reducing power. Bacterial $CO_2$ consumption was calculated based on the variation in the ratio of $CO_2$ to $N_2$ in the gas reservoir. $CO_2$ consumed by the bacteria grown in the electrochemical bioreactor (2,000 ml) reached a maximum of approximately 1,500 ml per week. Time-coursed variations in the bacterial community grown with the electrochemical reducing power and $CO_2$ in the mineral-based medium were analyzed via temperature gradient gel electrophoresis (TGGE) of the 16S rDNA variable region. Some of the bacterial community constituents noted at the initial time disappeared completely, but some of them observed as DNA signs at the initial time were clearly enriched in the electrochemical bioreactor during 24 weeks of incubation. Finally, Alcaligenes sp. and Achromobacter sp., which are capable of autotrophically fixing $CO_2$, were enriched to major constituents of the bacterial community in the electrochemical bioreactor.

Monitoring and Characterization of Bacterial Contamination in a High-Purity Water System Used for Semiconductor Manufacturing

  • Kim, In -Seop;Lee, Geon-Hyoung;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.99-104
    • /
    • 2000
  • Hydrogen peroxide has been used in cleaning the piping of an advanced high-purity water system that supplies ultra-high purity water (UHPW) for 16 megabyte DRAM semiconductor manufacturing. The level of hydrogen peroxide-resistant bacteria in UHPW water was monitored prior to and after disinfecting the piping with hydrogen peroxide. Most of the bacteria isolated after hydrogen peroxide disinfection were highly resistant to hydrogen peroxide. However, the percentage of resistant bacteria decreased with time. The hydrogen peroxide-resistant bacteria were identified as Micrococcus luteus, Bacillus cereus, Alcaligenes latus, Xanthomonas sp. and Flavobacterium indologenes. The susceptibility of the bacteria to hydrogen peroxide was tested as either planktonic cells or attached cells on glass. Attached bacteria as the biofilm on glass exhibited increased hydrogen peroxide resistnace, with the resistance increasing with respect to the age of the biofilm regrowth on piping after hydrogen peroxide treatment. In order to optimize the cleaning strategy for piping of the high-purity water system, the disinfecting effect of hydrogen preoxide and peracetic acid on the bacteria was evaluated. The combined use of hydrogen peroxide and peracetic acid was very effective in killing attached bacteria as well as planktonic bacteria.

  • PDF

신경회로망을 이용한 순환식 돈분폐수 처리시스템의 모니터링

  • Choe, Jeong-Hye;Son, Jun-Il;Yang, Hyeon-Suk;Jeong, Yeong-Ryun;Lee, Min-Ho;Go, Seong-Cheol
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.125-128
    • /
    • 2000
  • A recycling reactor system operated under sequential anoxic and oxic conditions for the swine wastewater has been developed, in which piggery slurry is fermentatively and aerobically treated and then part of the effluent recycled to the pigsty. This system significantly removes offensive smells (at both pigsty and treatment plant), BOD and other loads, and appears to be costeffective for the small-scale farms. The most dominant heterotrophs were Alcaligenes faecalis, Brevundimonas diminuta and Streptococcus sp. in order while lactic acid bacteria were dominantly observed in the anoxic tank. We propose a novel monitoring system for a recycling piggery slurry treatment system through neural networks. Here we tried to model treatment process for each tank(influent, fermentation, aeration, first sedimentation and fourth sedimentation tanks) in the system based on population densities of heterotrophic and lactic acid bacteria. Principle component analysis(PCA) was first applied to identify a relation between input(microbial densities and parameters for the treatment such as population densities of heterotrophic and lactic acid bacteria, suspended solids (SS), COD, $NH_3-N$, ortho-P, and total-P) and output, and then multilayer neural networks were employed to model the treatment process for each tank. PCA filtration of input data as microbial densities was found to facilitate the modeling procedure for the system monitoring even with a relatively lower number of input. Neural networks independently trained for each treatment tank and their subsequent combinatorial data analysis allowed a successful prediction of the treatment system for at least two days.

  • PDF

A Case of Ochrobactrum anthropi Infection after Using Medicinal Plants (약초 복용 후 Ochrobactrum anthropi에 감염 1예)

  • Cho, Seang-Sig;Cheun, Jai-Woo;Jeun, Chun-Bae;Park, Sang-Muk;Jang, Sook-Jin;Moon, Dae-Soo;Park, Young-Jin
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.1
    • /
    • pp.22-25
    • /
    • 2006
  • Ochrobactrum anthropi, previously known as Achromobacter species biotypes 1 and 2 (CDC groups Vd-1, Vd-2), belong to the groups of non-Enterobacteriaceae- nonfermentative Gram negative bacilli. Achromobacter is not presently a recognized genus. Achromobacter xylosoxidans has been transferred to genus Alcaligenes as A. xylosoxidans subsp. xylosoxidans, and "Achromobacter" sp. group Vd has been named Ochrobactrum anthropi. O. anthropi was isolated from a blood culture. Organisms were identified as O. anthropi by use of the biochemical test and the VITEK 2(bioMerieux, USA). The Organism was susceptible only to colistin, imipenem, meropenem, and tetracycline, but were resistant to amikacin, aztreonam, cefepime, ceftazidime, cefpirome, ciprofloxacin, gentamicin, isepamcin, netilmicin, pefloxacin, piperacillin, piperacillin/tazobactam, ticarcillin, ticarcillin/clavulanic acid, tobramycin, and trimethoprim/sulfamethoxazole. We report the clinical and microbiologic characteristics of O. anthropi infection in the patient. This is the first case of O. anthropi infection after using a plant as medicine at Chosun University Hospital.

  • PDF