• Title/Summary/Keyword: Alarm Announcement

Search Result 5, Processing Time 0.03 seconds

Design and development of enhanced criticality alarm system for nuclear applications

  • Srinivas Reddy, Padi;Kumar, R. Amudhu Ramesh;Mathews, M. Geo;Amarendra, G.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.690-697
    • /
    • 2018
  • Criticality alarm systems (CASs) are mandatory in nuclear plants for prompt alarm in the event of any criticality incident. False criticality alarms are not desirable as they create a panic environment for radiation workers. The present article describes the design enhancement of the CAS at each stage and provides maximum availability, preventing false criticality alarms. The failure mode and effect analysis are carried out on each element of a CAS. Based on the analysis, additional hardware circuits are developed for early fault detection. Two different methods are developed, one method for channel loop functionality test and another method for dose alarm test using electronic transient pulse. The design enhancement made for the external systems that are integrated with a CAS includes the power supply, criticality evacuation hooter circuit, radiation data acquisition system along with selection of different soft alarm set points, and centralized electronic test facility. The CAS incorporating all improvements are assembled, installed, tested, and validated along with rigorous surveillance procedures in a nuclear plant for a period of 18,000 h.

A Study on Warnning Criteria Investigation of Automated Rainfall Warning System -Focused on Realationship of Water Level, Discharge and Precipitation - (자동우량경보시설 경보발령기준 검토 연구 - 수위, 유출량, 강수량의 관계를 중심으로 -)

  • Ahn, Jae-Chan;Lee, Jong-Seol;Chol, Woo-Chung;Lee, Byong-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.101-109
    • /
    • 2008
  • Automated rainfall warning system is a facility to prevent casualties who were recreating in the down stream region with operating lead broadcasting or signaling warning automatically when torrential rainfall occurs in mountainous area. But standard of conventional warning does not consider the characteristics of basin, and warning signal. Evacuation signal 1 and evacuation signal 2 are uniformly signaled when the 10minute moving total of observed rainfall is higher than 4 mm, 6 mm, and 8 mm respectively. therefore, local governments and relative agencies had re-established the standard of warning by analyzing the risk water level, critical discharge and reference rainfall, which are considering the characteristics of basin. In this study the standard of conventional and re-established warning of weolseong basin, which is available to acquire a real rainfall. There are analyzed by considering the risk water level, critcal discharge and reference rainfall. Also this study compares rainfall of conventional and re-established warning standard and indentifies problems by analyzing adequacy of rainfall estimation for warning and proposes alternative. The standard of conventional warning which investigates with the converted rainfall(unit of a minute) issued too many alarm. The re-established standard upward has the necessity which will be regulated about the alarm announcement number of times. Considers the safety, upward regulation of alarm standard rainfall is a necessity which will be prudent.

Optimal Route Discovery System for Emergency Escape from Disaster Situations (재난 상황 시 탈출을 위한 최적 경로 탐색 시스템)

  • Kang, Moo-Bin;Joo, Yang-Ick
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.448-449
    • /
    • 2016
  • Enlargement and complexification of current structures increase the expected casualty in case of accident in those e.g., fire. In that case, there only have been basic instructions such as announcement of that situation, alarm bell, exit signs, etc. but any guidance to lead to proper escape route was not been provided so far. To tackle the problem, several schemes have been proposed. However, various risk factors were not considered and route discovery performance must be improved to be applied to structures. Therefore, this paper proposes an optimal route discovery system for emergency escape from disaster situations which takes into account various possible risk factors and enhances the searching efficiency by using the $A^{\ast}$ algorithm. Performance evaluation by computer simulation shows that the proposed scheme effectively leads to safe escape route.

  • PDF

Real-Time Flash Flood Evaluation by GIS Module at Mountainous Area (산악에서 돌발홍수예측을 위한 지리정보시스템의 적용)

  • Nam, Kwang-Woo;Choi, Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.317-327
    • /
    • 2005
  • The flood is the most general and frequently occurs among natural disasters. Generally flood by the rainfall which extends superexcellently for the occurrence but flash flood from severe rain storm gets up an absurd drowsiness at grade hour. This paper aims to 1 hour real-time flash flood and predict possibility at the area where is the possible flood will occur from the rainfall hour mountain after acquiring data in GIS(Geographic Information System) base by GcIUH(Geomorphoclimatic Instantaneous Unit Hydrograph). The flash flood occurrence is set up at 0.5m, 0.7m and 1.0m in standard depth. And this study suggests standard flood alarm which designed by probable flood according to duration time. The research result shows real-time flash flood evaluation has the suitable standard in the basin when comparing with the existing official warning announcement system considering topographical information.

Earthquake Monitoring : Future Strategy (지진관측 : 미래 발전 전략)

  • Chi, Heon-Cheol;Park, Jung-Ho;Kim, Geun-Young;Shin, Jin-Soo;Shin, In-Cheul;Lim, In-Seub;Jeong, Byung-Sun;Sheen, Dong-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2010
  • Earthquake Hazard Mitigation Law was activated into force on March 2009. By the law, the obligation to monitor the effect of earthquake on the facilities was extended to many organizations such as gas company and local governments. Based on the estimation of National Emergency Management Agency (NEMA), the number of free-surface acceleration stations would be expanded to more than 400. The advent of internet protocol and the more simplified operation have allowed the quick and easy installation of seismic stations. In addition, the dynamic range of seismic instruments has been continuously improved enough to evaluate damage intensity and to alert alarm directly for earthquake hazard mitigation. For direct visualization of damage intensity and area, Real Time Intensity COlor Mapping (RTICOM) is explained in detail. RTICOM would be used to retrieve the essential information for damage evaluation, Peak Ground Acceleration (PGA). Destructive earthquake damage is usually due to surface waves which just follow S wave. The peak amplitude of surface wave would be pre-estimated from the amplitude and frequency content of first arrival P wave. Earthquake Early Warning (EEW) system is conventionally defined to estimate local magnitude from P wave. The status of EEW is reviewed and the application of EEW to Odesan earthquake is exampled with ShakeMap in order to make clear its appearance. In the sense of rapidity, the earthquake announcement of Korea Meteorological Agency (KMA) might be dramatically improved by the adaption of EEW. In order to realize hazard mitigation, EEW should be applied to the local crucial facilities such as nuclear power plants and fragile semi-conduct plant. The distributed EEW is introduced with the application example of Uljin earthquake. Not only Nation-wide but also locally distributed EEW applications, all relevant information is needed to be shared in real time. The plan of extension of Korea Integrated Seismic System (KISS) is briefly explained in order to future cooperation of data sharing and utilization.