• Title/Summary/Keyword: AlSiCu

Search Result 500, Processing Time 0.026 seconds

Occurrence and Chemical Composition of Dolomite and Chlorite from Xiquegou Pb-Zn Deposit, China (중국 Xiquegou 연-아연 광상의 돌로마이트와 녹니석 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.125-140
    • /
    • 2022
  • The Xiquegou Pb-Zn deposit is located at the Qingchengzi orefield which is one of the largest Pb-Zn mineralized zone in the northeast of China. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Xiquegou deposit which is a Triassic magma-hydrothermal type deposit occurs as vein ore filled fractures along fault zone in unit 3 (dolomitic marble and schist) of Dashiqiao formation of the Paleoproterozoic Liaohe group. Xiquegou Pb-Zn deposit consists of quartz, apatite, calcite, pyrite, arsenopyrite, pyrrhotite, marcasite, sphalerite, chalcopyrite, stannite, galena, tetrahedrite, electrum, argentite, native silver and pyrargyrite. Wallrock alteration of this deposit contains silicification, pyritization, dolomitization, chloritization and sericitization. Based on mineral petrography and paragenesis, dolomites from this deposit are classified two type (1. dolomite (D0) as wallrock, 2. dolomite (D1) as wallrock alteration in Pb-Zn mineralization quartz vein ore). The structural formulars of dolomites are determined to be Ca1.03-1.01Mg0.95-0.83Fe0.12-0.02Mn0.02-0.00(CO3)2(D0) and Ca1.16-1.00Mg0.79-0.44Fe0.53-0.13Mn0.03-0.00As0.01-0.00(CO3)2(D1), respectively. It means that dolomites from the Xiquegou deposit have higher content of trace elements compared to the theoretical composition of dolomite. The dolomite (D1) from quartz vein ore has higher content of these trace elements (FeO, PbO, Sb2O5 and As2O5) than dolomite (D0) from wallrock. Dolomites correspond to Ferroan dolomite (D0), and ankerite and Ferroan dolomite (D1), respectively. The structural formular of chlorite from quartz vein ore is (Mg1.65-1.08Fe2.94-2.50Mn0.01-0.00Zn0.01-0.00Ni0.01-0.00Cr0.02-0.00V0.01-0.00Hf0.01-0.00Pb0.01-0.00Cu0.01-0.00As0.03-0.00Ca0.02-0.01Al1.68-1.61)5.77-5.73(Si2.84-2.76Al1.24-1.16)4.00O10(OH)8. It indicated that chlorite of quartz vein ore is similar with theoretical chlorite and corresponds to Fe-rich chlorite. Compositional variations in chlorite from quartz vein ore are caused by mainly octahedral Fe2+ <-> Mg2+ (Mn2+) substitution and partly phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV).

Mineralogy and Geochemistry of Shale Deposits in the Lower Anambra Basin, Nigeria: Implication for Provenance, Tectonic Setting and Depositional Environment

  • Olugbenga Okunlola;Agonsi Udodirim Lydia;Aliyu Ohiani Umaru;Raymond Webrah Kazapoe;Olusegun G. Olisa
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.799-816
    • /
    • 2023
  • Mineralogical and geochemical studies of shales within the Lower Anambra Basin was conducted to unravel the depositional environment, provenance, maturity, paleo-weathering conditions, and tectonic settings. Mineralogical studies conducted using X-ray diffraction analysis revealed that the samples were composed of kaolinite, montmorillonite, chlorite, and illite. KaolinIite is the dominant mineral, constituting approximately 41.5% of the bulk composition, whereas the non-clay minerals are quartz, ilmenite, and sillimanite. Geochemical analysis showed a predominance of SiO2, Al2O3, and Fe2O3 contents of the shale samples with mean values of 52.29%, 14.09%, and 6.15% for Imo Shale (IS); 52.31%, 16.70%, and 7.39% for Mamu Shale (MS); 43.21%, 21.33%, and 10.36% for Enugu Shale (ES); 53.35%, 15.64%, and 7.17% for Nkporo Shale (NS); and 51.24%, 17.25%, and 7.78% for Agwu Shale (AS). However, the shales were depleted in Na2O, MgO, K2O, MnO, TiO2, CaO, and P2O5. The trace element ratios of Ni/Co and Cu/Zn of the shale suggest an oxic depositional environment. The average SiO2 vs. Al2O3 ratio of the shales indicated textural maturity. Compared to the PAAS standard, the shales plot below the PAAS value of 0.85, suggesting a high degree of maturity and intensive chemical weathering, further confirmed on a CIA vs. PIA plot. On log (K2O/Na2O) against SiO2 and tectonic setting discriminant function diagrams, the shales plot mostly in the field of passive continental margin tectonic setting. The discriminant function diagrams as well as Al2O3/TiO2 ratio of the shales showed that they were derived from a mixed source (mafic and intermediate igneous rocks).

Enhancement of the Working Capacity and Selectivity Factor of Calcium-Exchanged Y Zeolites for Carbon Dioxide Pressure Swing Adsorption (이산화탄소 압력순환흡착을 위한 칼슘 이온교환 Y 제올라이트의 작업용량과 선택계수 향상)

  • Kim, Moon Hyeon
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.41-49
    • /
    • 2018
  • Y zeolites with different extra-framework cations, such as $Na^+$, $N^+$, $Ca^{2+}$, and $Cu^{2+}$, with different charge and ionic radius have been investigated to greatly enhance a working capacity (W) of $CO_2$ adsorption at $25^{\circ}C$ and a $CO_2/CO$ selectivity factor (S). A sample of NaY with a very small amount of 0.012% $Ca^{2+}$ was fully reversible for seven times repeated $CO_2$ adsorption/desorption cycles, thereby forming no surface carbonates unlikely earlier reports. Although at pressures above 4 bar, 2.00% CaY, 1.60% CuY and 1.87% LiY all showed a $CO_2$ adsorption very similar to that measured for NaY, they gave a significant decrease in the adsorption at lower pressures, depending on the metal ion. At 0.5 ~ 2.5 bar, the extent of $CO_2$ adsorption was in the order NaY > 1.60% CuY > 2.00% CaY > 1.87% LiY. All the $Na^+-based$ metals-exchanged zeolites have a FAU (faujasite) framework and a Si/Al value near 2.6; thus, there is no discernible difference in the framework topology, framework chemical compositions, effective aperture size, and channel structure between the zeolite samples. Therefore, the distinctive behavior in the adsorption of $CO_2$ with a character as a weak Lewis acid is associated with the site basicity of the zeolites, and the interaction potentials of the cations. Different trend was shown for a CO adsorption due to weaker quadrupole interactions. Adsorption of $CO_2$ and CO on samples of CaY with 0.012 to 5.23% Ca disclosed a significant dependence on the Ca loading. The $CO_2$ adsorption increased when the cation exists up to ca. 0.05%, while it decreased at higher Ca amounts. However, values for both W and S could greatly increase as the bare zeolite is enriched by $Ca^{2+}$ ions. The 5.23% CaY had $W=2.37mmol\;g^{-1}$ and S = 4.37, and the former value was comparable to a benchmark reported in the literature.

On-site Investigation of Hazardous Substances in Floor Dust of Several Primary Schools (일부 초등학교 바닥 먼지내 포함하고 있는 유해물질 성분에 대한 현장 평가)

  • Kim, Ki Youn;Kim, Hyeon Tae;Lee, Kwon Seob
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.478-483
    • /
    • 2014
  • Objectives: The main objective of this study is to assess the levels of hazardous substances in floor dust in primary schools located in the city of Busan in Korea. Materials and Methods: An on-site investigation of three primary schools was performed between April and May 2013. The hazardous substances measured in this study were 14 heavy metals (Cu, Fe, Pb, Mn, Ni, Zn, Cr, Cd, As, Al, Sn, Co, Mo and Si) and the biological agents were bacteria, fungi and endotoxin). Results: Among the heavy metals, Cd, Co, Pb and Cr were not detected in the floor dust from the three primary schools. The mean levels of other heavy metals were as follows: $20({\pm}10)ng/cm^2$ for As, $30({\pm}20)ng/cm^2$ for Al, $5({\pm}4)ng/cm^2$ for Sn, $20({\pm}20)ng/cm^2$ for Mo, $1,340({\pm}620)ng/cm^2$ for Si, $110({\pm}100)ng/cm^2$ for Cu, $240({\pm}50)ng/cm^2$ for Fe, $30({\pm}30)ng/cm^2$ for Mn, $10({\pm}10)ng/cm^2$ for Ni, and $50({\pm}30)ng/cm^2$ for Zn. It was found that mean concentrations of bacteria, fungi and endotoxin in the floor dust of primary schools were $4.7{\time}10^7({\pm}2.2{\time}10^7)cfu/cm^2$, $6.3{\time}10^6({\pm}6.4{\time}10^6)cfu/cm^2$, and $8,140({\pm}5,801)EU/cm^2$, respectively. The predominant species identified in the floor dust of the primary schools were Pseudomonas spp. for bacteria and Penicillium spp.,Cladosporidium spp.,and Aspergillus spp. for fungi, which would be somewhat similar to the microbial distribution pattern of other general environments. Conclusions: Based on the results obtained from this study, the levels of heavy metals, microbes and endotoxin distributed in the floor dust of primary school were higher than those reported for other general facilities. Thus, preventive measures should be prepared for the health care of children.

Effect of Hot Spring Water on Dough Fermentation and Quality of Bread (온천수가 반죽의 발효와 품질에 미치는 영향)

  • 이예경;김순동
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.13 no.1
    • /
    • pp.56-63
    • /
    • 2003
  • The dough fermentation and the quality of bread prepared with different kinds of water such as distilled water, tap water and diluted hot spring water(SW) from Gyungsan Sipan hot spring were investigated. Content of total soluble solid in the hot spring water was 8,765 ppm and contents of Na, Ca, Mg and K as major elements was 2,296, 287, 65 and 8 ppm, respectively. Content of Fe, Cu, Co, F, Zn, Al, S, Mo, Se and Si as minor elements was in the range of 0.002~5.2 ppm. The pH(6.95~7.68) of the dough prepared with diluted hot spring water(I, 55 times; II, 4 times; III, 2 times) was higher than that of distilled water. The dough volume after the 1st fermentation was expecially lower in the III, but the volume of the dough prepared with III adjusted pH to 5.5 was higher than that of the control. The hardness and the strength were higher than those of the control, but the scores were love. than those of the control in case of pH adjustment(pH 5.5). The cohesiveness was also lower than that of the control in the bread with diluted hot spring water. Softness and stickiness of the bread(III) were hisher than those of the control. But overall acceptability was the highest in the II.

  • PDF

Mineralogy and Geochemistry of Iron Hydroxides in the Stream of Abandoned Gold Mine in Kwangyang, Korea (광양 폐금광 수계에 형성된 철수산화물에 대한 광물학적 및 지구화학적 특성)

  • Park, Cheon-Young;Jeoung, Yeon-Joong;Kim, Seoung-Ku
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.208-222
    • /
    • 2001
  • Geochemical investigations on suspended amorphous iron oxide material from the Kwangyang gold mine and its surrounding area, Cheonnam, Korea have been carried out. The sediments samples were collected from 11 location along Kwangyang mine area and were air dried and sieved to -80 mesh. These samples consist mainly of iron, silicon and alumina. The Fe$_2$O$_3$ contents ranges from 17.9 wt.% to 72.3 wt.%. The content of Fe$_2$O$_3$ increase with decreasing Si, Al, Mg, Na, K, Mn, and Ti, whereas the contents of Te, Au, Ga, Bi, Cd, Hg, Sb, and Se increase in the amorphous stream sediments. Amorphous stream sediments have been severely enriched for As (up to 54.9 ppm), Bi (up to 3.77 ppm), Cd (up to 3.65 ppm), Hg (up to 64 ppm), Sb (up to 10.1 ppm), Cu (up to 37.1 ppm), Mo (up to 8.86 ppm), Pb (up to 9.45 ppm) and Zn (up to 29.7 ppm). At the upstream site, the Au content (up to 4.4 ppm) in the amorphous stream sediments are relatively high but those contents decrease with distance of mine location. The content of Ag (up to 0.24 ppm) were low in upstream site but those contents increase significantly in the downstream sites. The X-ray diffraction patterns of the samples have virtually no sharp and discrete peaks, indicating that some samples are amorphous or poorly-ordered. The quartz, goethite, kaolinite and illite were associated in amorphous stream sediments. The infrared spectra for amorphous stream sediments show major absorption bands due to OH stretching, adsorbed molecular water, sulfate and Fe-O stretching, respectively.

  • PDF

Sedimentary type Non-Metallic Mineral Potential Analysis using GIS and Weight of Evidence Model in the Gangreung Area (지리정보시스템(GIS) 및 Weight of Evidence 기법을 이용한 강릉지역의 퇴적기원의 비금속 광상부존가능성 분석)

  • Lee Sa-Ro;Oh Hyun-Joo;Min Kyung-Duck
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.129-150
    • /
    • 2006
  • Mineral potential mapping is an important procedure in mineral resource assessment. The purpose of this study is to analyze mineral potential using weight of evidence model and a Geographic Information System (GIS) environment to identify areas that have not been subjected to the same degree of exploration. For this, a variety of spatial geological data were compiled, evaluated and integrated to produce a map of potential mineral in the Gangreung area, Korea. for this, a spatial database considering mineral deposit, topographic, geologic, geophysical and geochemical data was constructed for the study area using a GIS. The used mineral deposits were non-metallic(Kaolin, Porcelainstone, Silicastone, Mica, Nephrite, Limestone and Pyrophyllite) deposits of sedimentary type. The factors relating to mineral deposits were the geological data such as lithology and fault structure, geochemical data, including the abundance of Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Si, Sr, V, Zn, $Cl^-,\;F^-,\;{PO_4}^{3-},\;{NO_2}^-,\;{NO_3}^-,\;SO_{42-}$, Eh, PH and conductivity and geophysical data, including the Bouguer and magnetic anomalies. These factors were used with weight of evidence model to analyze mineral potential. Probability models using the weight of evidence were applied to extract the relationship between mineral deposits and related factors, and the ratio were calculated. Then the potential indices were calculated by summation of the likelihood ratio and mineral potential maps were constructed from Geographic Information System (GIS). The mineral potential maps were then verified by comparison with the known mineral deposit areas. The result showed the 85.66% in prediction accuracy.

  • PDF

Adsorption Characteristics Evaluation of Natural Zeolite for Heavy-metal Contaminated Material Remediation (중금속 오염물질 정화를 위한 천연제올라이트의 흡착특성)

  • Shin, Eun-Chul;Park, Jeong-Jun;Jeong, Cheol-Gyu;Kim, Sung-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.59-67
    • /
    • 2014
  • The amount of the contaminants that can be adsorbed on the drain was evaluated for the effective remediation of the contaminated soil, and the contaminants adsorptivity of the drain was evaluated by comparing the isothermal adsorption model after carrying out the contaminants adsorption test of the reactants coated on the surface of the drain. The reactant used in the experiment is a natural zeolite, and the contaminants are copper, lead and cadmium. The results that Freundlich and Langmuir adsorption isotherm model are compared to the adsorption amount according to the change of the initial concentration by the contaminants. As a result of the component analysis, because Si, Al and O are contained approximately 28%, 11% and 48%, respectively, it is identified that the material coated on the surface of the drain is the component of the zeolite which is the reactant for the adsorption of the heavy-metal (Cu, Pb, Cd) contaminants. The heavy-metal adsorption kinetic of the zeolite which is the reactant was decreased in order of lead, copper and cadmium. The important factor of the performance evaluation of the adsorbent is the reaction rate, and if zeolite is used as the reactant in the relationship between the maximum amount of adsorption and reaction rate, it can be utilized as the design factor that determine the removal order of the complex heavy-metal. In other words, because the maximum adsorption quantity of lead is smaller compared to copper but the reaction rate is relatively fast, it can be primarily removed, and copper can be removed after removing the lead. It was analyzed that Cadmium can be finally removed after that other heavy-metal is removed.

Direct Conversion for the Production of 5-HMF from Cellulose over Immobilized Acidic Ionic Liquid Catalyst with Metal Chloride (고정화 산성 이온성 액체 촉매와 금속염화물 촉매를 이용한 셀룰로우스의 5-HMF로의 직접 전환 연구)

  • Park, Yong Beom;Choi, Jae Hyung;Lim, Han-Kwon;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.108-115
    • /
    • 2014
  • Various metal chlorides and acid catalysts in ionic liquid solvent were investigated to directly convert cellulose into 5-hydroxymethylfurfural (5-HMF). Metal chlorides containing Sn(II), Zn(II), Al(III), Fe(III), Cu(II), and Cr(III) were used and acidic ionic liquid immobilized on silica gel as an acid catalyst and commercial acid catalysts (sulfuric acid, chloric acid, Amberlyst-15,DOWEX50x8) were used for comparison studies. The acid strength and amount of acid catalysts were probed with Hammett indicator. The selectivity and yield of 5-HMF were determined with reaction temperature, reaction time and catalyst ratio. A catalyst containing $CrCl_3-6H_2O$ and $SiO_2-[ASBI]HSO_4$ showed the highest selectivity and it was found that this catalyst had higher activity than commercial solid acid catalysts such as Amberlyst-15 and DOWEX50x8. The selectivity of 5-HMF appeared to be mainly dependent on the acid strength and catalyst ratio, it was found that levulinic acid was produced from 5-HMF by rehydration.

Banded Iron Formations in Congo: A Review

  • Yarse Brodivier Mavoungou;Anthony Temidayo Bolarinwa;Noel Watha-Ndoudy;Georges Muhindo Kasay
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.745-764
    • /
    • 2023
  • In the Republic of Congo, Banded iron formations (BIFs) occur in two areas: the Chaillu Massif and the Ivindo Basement Complex, which are segments of the Archean Congo craton outcropping in the northwestern and southwestern parts of the country. They show interesting potential with significant mineral resources reaching 2 Bt and grades up to 60% Fe. BIFs consist mostly of oxide-rich facies (hematite/magnetite), but carbonate-rich facies are also highlighted. They are found across the country within the similar geological sequences composed of amphibolites, gneisses and greenschists. The Post-Archean Australian Shale (PAAS)-normalized patterns of BIFs show enrichment in elements such as SiO2, Fe2O3, CaO, P2O5, Cr, Cu, Zn, Nb, Hf, U and depletion in TiO2, Al2O3, MgO, Na2O, K2O, Sc, Th, Ba, Zr, Rb, Ni, V. REE diagrams show slight light REEs (rare earth elements; LREEs) compared to heavy REEs (HREEs), and positive La and Eu anomalies. The lithological associations, as well as the very high (Eu/Eu*)SN ratios> 1.8 shown by the BIFs, suggest that they are related to Algoma-type BIFs. The positive correlations between Zr and TiO2, Al2O3, Hf suggest that the contamination comes mainly from felsic rocks, while the absence of correlations between MgO and Cr, Ni argues for negligeable contributions from mafic sources. Pr/Pr* vs. Ce/Ce* diagram indicates that the Congolese BIFs were formed in basins with redox heterogeneity, which varies from suboxic to anoxic and from oxic to anoxic conditions. They were formed through hydrothermal vents in the seawater, with relatively low proportions of detrital inputs derived from igneous sources through continental weathering. Some Congolese BIFs show high contents in Cr, Ni and Cu, which suggest that iron (Fe) and silicon (Si) have been leached through hydrothermal processes associated with submarine volcanism. We discussed their tectonic setting and depositional environment and proposed that they were deposited in extensional back-arc basins, which also recorded hydrothermal vent fluids.