• Title/Summary/Keyword: AlO(OH)

Search Result 778, Processing Time 0.027 seconds

Conversion of NOx by Plasma-hydrocarbon Selective Catalytic Reduction Process (플라즈마-탄화수소 선택적 촉매환원공정을 이용한 질소산화물 저감 연구)

  • Jo, Jin-Oh;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.103-111
    • /
    • 2018
  • A plasma-catalytic combined process was used as an attempt to improve the conversion efficiency of nitrogen oxides ($NO_x$) over a wide temperature range ($150{\sim}500^{\circ}C$) to cope with the exhaust gas whose temperature varies greatly. Since the catalytic $NO_x$ reduction is effective at high temperatures where the activity of the catalyst itself is high, the $NO_x$ reduction was carried out without plasma generation in the high temperature region. On the other hand, in the low temperature region, the plasma was created in the catalyst bed to make up for the decreased catalytic activity, thereby increasing the $NO_x$ conversion efficiency. Effects of the types of catalysts, the reaction temperature, the concentration of the reducing agent (n-heptane), and the energy density on $NO_x$ conversion efficiency were examined. As a result of comparative analysis of various catalysts, the catalytic $NO_x$ conversion efficiency in the high temperature region was the highest in the case of the $Ag-Zn/{\gamma}-Al_2O_3$ catalyst of more than 90%. In the low temperature region, $NO_x$ was hardly removed by the hydrocarbon selective reduction process, but when the plasma was generated in the catalyst bed, the $NO_x$ conversion sharply increased to about 90%. The $NO_x$ conversion can be maintained high at temperatures of $150{\sim}500^{\circ}C$ by the combination of plasma in accordance with the temperature change of the exhaust gas.

Study on Optical Characteristics of Organic Light-emitting Diodes Using Two Fluorescence Dopants in Single Emissive Layer (2개의 형광 도판트를 적용한 단일발광층 유기발광소자의 광학적 특성 연구)

  • Kim, Tae-Gu;Oh, Hwan-Sool;Kim, You-Hyun;Kim, Woo-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.184-189
    • /
    • 2010
  • Organic light-emitting diodes (OLEDs) with single emissive layer structures using two fluorescent dopants were fabricated and the device was composed of ITO / NPB ($700{\AA}$) / MADN : C545T - 1.0% : DCJTB - 0.3% ($300{\AA}$) / Bphen ($300{\AA}$) / LiF ($10{\AA}$) /Al ($1,000{\AA}$). C545T and DCJTB were functioned as green fluorescent dye and red fluorescent dye under MADN as host material. Concentrations of C545T and DCJTB was changed in emissive layer of MADN. Optimized OLED device using two fluorescence dopants shows emission efficiency of 8.42 cd/A and luminescence of 3169 cd/$m^2$at 6 V with CIE color coordinate, (0.43, 0.50). Electroluminescence of optimized OLED showed two peak at 500 and 564 nm according to C545T and DCJTB. These results indicate that F$\ddot{o}$ster energy transfer energy transfer was from MADN to C545T and rather than to DCJTB continuously.

Growth characters and harvest time for the artificial cultivation of Mycoleptodonoides aitchisonii (침버섯 인공재배 생육 특성과 수확 최적 시기)

  • Kim, Young;Jung, Bo-Mi;Wi, An-Jin;Park, Whoa-Shig;Bang, Mi-Ae;Park, Dae-Hun;Seo, Joung-Wook;Oh, Deuk-Sil
    • Journal of Mushroom
    • /
    • v.13 no.2
    • /
    • pp.114-118
    • /
    • 2015
  • Mycoleptodonoides aitchisonii has been used a culinary material and traditional medicine for a long time in worldwide and recently the researches to find biological effects have been increased such as dopamine activation, preventive effect against phytopathogens, inhibitive effect against erythrocyte coagulation, anti-oxidative effect, anti-tumorigenic effect, etc. However it is hard to cultivate Mycoleptodonoides aitchisonii it is impossible to be mass-produced and in order to solve the problem in this study we found the appropriate cultivation period and the harvest point for it. For life cycle (from primordium formation to harvest) the morphology, weight, and quantity of polysaccharide of Mycoleptodonoides aitchisonii were measured using with 5 bodies per a day and it could be divided for 4 stages; primordium formation, growth, needle maturation, and aging. And then from the results the Zeide nonlinear growth curve could be gotten. At 13th day after cultivation there is the relation between the change of media weight and body weight and at 14th day after cultivation the rate of polysaccharide in the body was 11 %. However in the case of O2 insufficient supply the malformation of them was observed.

Tuning Electrical Performances of Organic Charge Modulated Field-Effect Transistors Using Semiconductor/Dielectric Interfacial Controls (유기반도체와 절연체 계면제어를 통한 유기전하변조 트랜지스터의 전기적 특성 향상 연구)

  • Park, Eunyoung;Oh, Seungtaek;Lee, Hwa Sung
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • Here, the surface characteristics of the dielectric were controlled by introducing the self-assembled monolayers (SAMs) as the intermediate layers on the surface of the AlOx dielectric, and the electrical performances of the organic charge modulated transistor (OCMFET) were significantly improved. The organic intermediate layer was applied to control the surface energy of the AlOx gate dielectric acting as a capacitor plate between the control gate (CG) and the floating gate (FG). By applying the intermediate layers on the gate dielectric surface, and the field-effect mobility (μOCMFET) of the OCMFET devices could be efficiently controlled. We used the four kinds of SAM materials, octadecylphosphonic acid (ODPA), butylphosphonic acid (BPA), (3-bromopropyl)phosphonic acid (BPPA), and (3-aminopropyl)phosphonic acid (APPA), and each μOCMFET was measured at 0.73, 0.41, 0.34, and 0.15 cm2V-1s-1, respectively. The results could be suggested that the characteristics of each organic SAM intermediate layer, such as the length of the alkyl chain and the type of functionalized end-group, can control the electrical performances of OCMFET devices and be supported to find the optimized fabrication conditions, as an efficient sensing platform device.

Preparation of Self-repairing Polymer-modified Waterproofing Asphalt-montmorillonite Composite: 2. Validation of Optimized Silylation of Montmorillonite (K-10) Using 3-aminopropyltriethoxysilane (자가치유성을 갖는 고분자개질 방수아스팔트-몬모릴로나이트 composite 제조: 2. 3-aminopropyltriethoxysilane에 의한 몬모릴로나이트(K-10)의 실란화 최적화 검증)

  • Lee, Eun Ju;Lee, Jong Hoon;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.409-418
    • /
    • 2017
  • In preparation of self-repairing polymer-modified waterproofing asphalt-montmorillonite (MMT) composite, silylation-modification characteristics of cation ($Na^+$) exchanged K-10 (Na-MMT-K) using 3-aminopropyltriethoxysilane (APS) were studied and the optimal conditions of its silylation-modification process were proposed by use of the results of instrumental analysis, including FTIR, XRD, NMR and TGA, on silylation-modified Na-MMT-K (S-Na-MMT-K) under various conditions. According to FTIR analysis on S-Na-MMT-K, its peak-strengths of Si-O, -$NH_2$, -$CH_2$- and -OH, correlated with APS silylation-modification reaction, were compared each other. As a result, its optimal conditions including APS-MMT reacting period, APS-stirring period prior to APS-MMT reaction, APS concentration and reaction temperature were turned out to be 2~3 h, 20 min, 7.5 w/v% and $50^{\circ}C$, respectively. In addition, the optimal conditions induced from the results of TGA were also nearly consistent to those according to the results of FTIR analyses. These optimal conditions were turned out to be almost consistent to those drawn according to a criterion from XRD results suggested previously by Lee et al., by which the criterion was validated.

The Recycling of Inorganic Industrial Waste in Cement Industry (시멘트산업에서 무기질 산업 폐·부산물의 재활용)

  • Kang, S.K.;Nam, K.U.;Seo, H.N.;Kim, N.J.;Min, K.S.;Chung, H.S.;Oh, H.K.
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.61-69
    • /
    • 2000
  • In this study, generation process and properties of inorganic industrial waste which can be used in cement industry were investigated. The scheme of recycling to use the selected waste as raw materials, mineralizer and flux, admixture and raw materials for special cement was decided and then various experiments were carried out. The experimental results were as follows ; In the use of industrial waste as raw materials, ferrous materials could be substituted by Cu-slag, Zn-slag, electric arc furnace or convertor furnace slag etc., and a siliceous material could be substituted by sand from cast-iron industry. By-products from sugar or fertilizer industry, which has $CaF_2$ as the main component, and jarosite from Zn refinery enabled clinker phases to be formed at lower temperature by $100{\sim}150^{\circ}C$. Adding Cu slag and STS sludge in proper proportion to cement improved properties of cement. Fly ash and limestone powder as admixture had the same effect on cement. As a raw material for special cement, aluminium waste sludge could be used in making ultra early strength cement, which had the compressive strength of $300kg/cm^2$ within 2hours. And two different ashes from municipal incinerator could be raw materials of the cement which was mainly composed of $C_3S$ and $C_{11}A_7{\cdot}CaCl_2$ as clinker phases.

  • PDF

Analysis of wet chemical tunnel oxide layer characteristics capped with phosphorous doped amorphous silicon for high efficiency crystalline Si solar cell application

  • Kang, Ji-yoon;Jeon, Minhan;Oh, Donghyun;Shim, Gyeongbae;Park, Cheolmin;Ahn, Shihyun;Balaji, Nagarajan;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.406-406
    • /
    • 2016
  • To get high efficiency n-type crystalline silicon solar cells, passivation is one of the key factor. Tunnel oxide (SiO2) reduce surface recombination as a passivation layer and it does not constrict the majority carrier flow. In this work, the passivation quality enhanced by different chemical solution such as HNO3, H2SO4:H2O2 and DI-water to make thin tunnel oxide layer on n-type crystalline silicon wafer and changes of characteristics by subsequent annealing process and firing process after phosphorus doped amorphous silicon (a-Si:H) deposition. The tunneling of carrier through oxide layer is checked through I-V measurement when the voltage is from -1 V to 1 V and interface state density also be calculated about $1{\times}1012cm-2eV-1$ using MIS (Metal-Insulator-Semiconductor) structure . Tunnel oxide produced by 68 wt% HNO3 for 5 min on $100^{\circ}C$, H2SO4:H2O2 for 5 min on $100^{\circ}C$ and DI-water for 60 min on $95^{\circ}C$. The oxide layer is measured thickness about 1.4~2.2 nm by spectral ellipsometry (SE) and properties as passivation layer by QSSPC (Quasi-Steady-state Photo Conductance). Tunnel oxide layer is capped with phosphorus doped amorphous silicon on both sides and additional annealing process improve lifetime from $3.25{\mu}s$ to $397{\mu}s$ and implied Voc from 544 mV to 690 mV after P-doped a-Si deposition, respectively. It will be expected that amorphous silicon is changed to poly silicon phase. Furthermore, lifetime and implied Voc were recovered by forming gas annealing (FGA) after firing process from $192{\mu}s$ to $786{\mu}s$. It is shown that the tunnel oxide layer is thermally stable.

  • PDF

A Study for Crystal Growth Inhibition of Ettringite by Solution Synthesis Experiment (용액합성실험에 의한 에트린자이트 결정성장억제 연구)

  • Lee, Hyo-Min;Hwang, Jin-Yeon;Oh, Ji-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.51-61
    • /
    • 2010
  • Ettringite $(Ca_6[Al(OH)_6]_2(SO_4)_3{\cdot}26H_2O)$ is a sulfate mineral that shows a complicate property in concrete. It is often called as "a cancer of concrete" because secondary ettringite formation in hardened concrete often cause expansion and cracking of concrete due to its expansive crystal structure. In the present study, we tested the possibility for crystal growth inhibition of secondary ettringite by crystallization inhibitors that are commercially used for scaling inhibitors in Korea. For the test, we developed a method of ettringite solution synthesis. Three types of crystallization inhibitors were selected and examined the effects On ettringite growth inhibition. The experimental results of ettringite solution synthesis indicated that ettringite was successfully synthesized under condition that the mass balance between calcium hydroxide saturated solution and aluminum sulfate solution was attained. Monosulfate and semisulfate were synthesized when the ratio of $Ca^{2+}$ ions to ${SO_4}^{2+}$ ions was increased. The induction time of ettringite crystallization was less than 2 min. and crystallization was almost completed within an hour. The experimental results of ettringite crystallization inhibition showed that organic PBCT (2-Phosphonobutane-1,2,4-Tricarboxylic Acid) and inorganic SHMP (Sodium Hexametaphosphate) were relatively less effective on ettringite crystallization inhibition under experimental conditions. However, organic HEDP (1-Hydoxyethylidene-1,1-Diphosphonic Acid) effectively prevented ettringite growth with producing amorphous gel phase materials up to inhibitor concentration 0.1 vol.% of aluminum sulfate solution.

The Effect of Titaniuml Surface Treatment on Osteoblast-Like Cell Attachment and Proliferation (Titanium 표면처리 방법이 Osteoblast-like Cells의부착 및 증식에 미치는 영향)

  • Kim, Do-Yung;Seol, Yang-Jo;Rhyu, In-Cheul;Hahm, Byung-Do;Chung, Chong-Pyoung;Choi, Sang-Mook;Kim, Woo-Jin;Baik, Hong-Koo;Heo, Seong-Joo;Han, Chong-Hyun;Kim, Myung-Ho;Choi, Yong-Chang;Chun, Heoung-Jae;Kwon, Soo-Kyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.3
    • /
    • pp.491-504
    • /
    • 2000
  • In clinical therapy, the current goal of dental implants is to enhance quantity and quality of osseointegration. Surface roughness and oxide structure are considered to influence the behavior of adherent cells. The purpose of this study is to evaluate the effect of different surface treatment on cellular response. The attachment and proliferation of osteoblast-like cell on sandblasted, sandblasted and etched, thermal oxidated surfaces have been compared. Sandblasting was done with $Al_2O_3$ particles(grain size of $50{\mu}m$), etching was processed with $NH_4OH$ : $H_2O_2$ : $H_2O(1:1:5)$ at $90^{\circ}C$ for 1 minute. Thermal oxidation was followed sandblasting and etching at $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$ for 2 hours. Measurement of surface roughness after the different treatment did not show any differences of Ra value between terated surfaces. Cell attachment and proliferation were increased during experiment period, but no difference was observed. SEM evaluation revealed a similar pattern of osteoblast-like cells, well attached with dendritic extension and producing numerous matrix vesicles on cell surface. The results of this study showed that oxide layer alteration by thermal oxidation did not affect the attachment and proliferation of osteoblast-like cells. This suggests the possibility that the cellular responses are further influenced by surface roughness than titaniun oxide structure.

  • PDF

Characteristics of Vanadium Leaching from Basaltic Soils of Jeju Island, Korea (제주도 현무암 기원 토양의 바나듐 용출 특성)

  • Hyun, Ik-Hyun;Yang, Cheol-Shin;Yun, Seong-Taek;Kim, Horim;Lee, Min-Gyu;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1541-1554
    • /
    • 2016
  • To understand the characteristics of vanadium leaching from soils formed by the weathering of basalts, paleo soil at Gosan, Jeju Island, Korea, and several present-day soils from neighboring areas were collected. Leaching experiments were carried out by two approaches: 1) batch experiments under various geochemical conditions (redox potential (Eh) and pH) and 2) continuous leaching experiments under conditions similar to those of natural environments. From the batch experiments, leached vanadium concentrations were highest under alkaline (NaOH) conditions, with a maximum value of $2,870{\mu}g/L$, and were meaningful (maximum value, $114{\mu}g/L$) under oxidizing ($H_2O_2$) conditions, whereas concentrations under other conditions (acidic-HCl, $neutral-NaHCO_3$, and $reducing-Na_2S_2O_3$) were negligible. This indicated that the geochemical conditions, in which soil-water reactions occurred to form groundwater with high vanadium concentrations, were under alkaline-oxidizing conditions. From the continuous leaching experiments, the pH and leached vanadium concentrations of the solution were in the ranges of 5.45~5.58 and $6{\sim}9{\mu}g/L$, respectively, under $CO_2$ supersaturation conditions for the first 15 days, whereas values under $O_2$ aeration conditions after the next 15 days increased to 8.48~8.62 and $9.7{\sim}12.2{\mu}g/L$, respectively. Vanadium concentrations from the latter continuous leaching experiments were similar to the average concentration of groundwater in Jeju Island ($11.2{\mu}g/L$). Furthermore leached vanadium concentrations in continuous leaching experiments were highly correlated with pH and Al, Cr, Fe, Mn and Zn concentrations. The results of this study showed that 1) alkaline-oxidizing conditions of water-rock (soil) interactions were essential to form vanadium-rich groundwater and 2) volcanic soils can be a potential source of vanadium in Jeju Island groundwater.