• Title/Summary/Keyword: AlN-doped

Search Result 190, Processing Time 0.04 seconds

Performance Characteristics of p-i-n Type Organic Thin-film Photovoltaic Cell with CuPc: $F_4$-TCNQ Hole Transport Layer (CuPc: $F_4$-TCNQ 정공 수송층이 도입된 P-i-n형 유기 박막 태양전지의 성능 특성 연구)

  • Park, So-Hyun;Kang, Hak-Su;Senthilkumar, Natarajan;Park, Dae-Won;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.191-197
    • /
    • 2009
  • We have investigated the effect of strong p-type organic semiconductor $F_4$-TCNQ-doped CuPc hole transport layer on the performance of p-i-n type bulk heterojunction photovoltaic device with ITO/PEDOT:PSS/CuPc: $F_4$-TCNQ(5 wt%)/CuPc:C60(blending ratio l:l)/C60/BCP/LiF/Al, architecture fabricated via vacuum deposition process, and have evaluated the J-V characteristics, short-circuit current ($J_{sc}$), open-circuit voltage($V_{oc}$), fill factor(FF), and power conversion efficiency(${\eta}_e$) of the device. By doping $F_4$-TCNQ into CuPc hole transport layer, increased absorption intensity in absorption spectra, uniform dispersion of organic molecules in the layer, surface uniformity of the layer, and enhanced injection currents improved the current photovoltaic device with power conversion efficiency(${\eta}_e$) of 0.16%, which is still low value compared to silicone solar cell indicating that many efforts should be made to improve organic photovoltaic devices.

The Characteristics of Organic Light-emitting Diodes With a New Blue Phosphorescent Material (새로운 청색의 인광 물질을 어용한 유기 발광 소자의 전기적 특성 및 수명에 대한 연구)

  • Kim, Y.K.;Park, J.H.;Seo, J.H.;Seo, J.H.;Han, J.W.;Im, C.;Han, S.H.;Lee, S.H.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.74-78
    • /
    • 2007
  • A new blue phosphorescent material for organic light emitting diodes (OLEDs), Iridium(III)bis[2-(4-fIuoro-3-benzonitrile)-pyridinato-N,C2'] picolinate (Firpic-CN), was synthesized and studied. We compared characteristics of Firpic-CN and Bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (FIrpic) which has been used for blue dopant materials frequently. The devices structure were indium tin oxide (ITO) (1000 ${\AA}$)/N,N'-diphenyl-N,N'-(2-napthyl)-(1,1'-phenyl)-4,4'-diamine (NPB) (500 ${\AA}$)/4,4'-N,N'-dicarbazole-biphyenyl (CBP) : FIrpic and FIrpic-CN (X wt%)/4,7-diphenyl-1,10-phenanthroline (BPhen) (300 ${\AA}$)/lithum quinolate (Liq) (20 ${\AA}$)/Al (1000 ${\AA}$). 15 wt% FIrpic-CN doped device exhibits a luminance of $1450\;cd/m^2$ at 12.4 V, luminous efficiency of 1.31 cd/A at $3.58mA/cm^2$, and Commission Internationale d'Eclairage $(CIE_{x,y})$ coordinates of (0.15, 0.12) at 12 V which shows a very deep blue emission. We also measured lifetime of devices and was presented definite difference between devices of FIrpic and FIrpic-CN. Device with FIrpic-CN as a dopant presented lower longevity due to chemical effect of CN ligand.

Towards Thermally Stable Tandem Organic Solar Cells

  • Yang, Feng;Wang, Sihan;Kim, Ji-Hwan;Kim, Yong-Sang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.410.2-410.2
    • /
    • 2016
  • Tandem structure is promising in organic solar cells because of its double open-circuit voltage (VOC) and efficient photon energy conversion. In a typical tandem device, the two single sub-cells are stacked and connected by an interconnecting layer. The fabrication of two sub-cells are usually carried out in a glovebox filled with nitrogen or argon gas, which makes it expensive and laborious. We report a glovebox-free fabricated inverted tandem organic solar cells wherein the tandem structure comprises sandwiched interconnecting layer based on p-doped hole-transporting, metal, and electron-transporting materials. Complete fabrication process of the tandem device was performed outside the glove box. The tandem solar cells based on poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61-butyric acid methyl ester (PCBM) can realize a high VOC, which sums up of the two sub-cells. The tandem device structure was ITO/ZnO/P3HT:PCBM/PEDOT:PSS/MoO3/Au/Al/ZnO-d/P3HT:PCBM/PEDOT:PSS/Ag. The separate sub-cells were morphologically and thermally stable up to 160 oC. The high stability of the active layer benefits in the fabrication processes of tandem device. The performance of tandem organic solar cells comes from the sub-cells with an 50 nm thick active layer of P3HT:PCBM, achieving an average power conversion efficiency (PCE) of 2.9% (n=12) with short-circuit current density (JSC) = 4.26 mA/cm2, VOC = 1.10 V, and fill factor (FF) = 0.62. Based on these findings, we propose a new method to improve the performance and stability of tandem organic solar cells.

  • PDF

Metal Oxide-Based Heterojunction Broadband Photodetector (산화물 반도체 기반의 이종접합 광 검출기)

  • Lee, Sang-eun;Lee, Gyeong-Nam;Ye, Sang-cheol;Lee, Sung-ho;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.165-170
    • /
    • 2018
  • In this study, double-layered TCO (transparent conductive oxide) films were produced by depositing two distinct TCO materials: $SnO_2$ works as an n-type layer and ITO (indium-doped tin oxide) serves as a transparent conductor. Both transparent conductive oxide-films were sequentially deposited by sputtering. The electrical and optical properties of single-layered TCO films ($SnO_2$) and double-layered TCO ($ITO/SnO_2$) films were investigated. A TCO-embedding photodetector was realized through the formation of an $ITO/SnO_2/p-Si/Al$ layered structure. The remarkably high rectifying ratio of 400.64 was achieved with the double-layered TCO device, compared to 1.72 with the single-layered TCO device. This result was attributed to the enhanced electrical properties of the double-layered TCO device. With respect to the photoresponses, the photocurrent of the double-layered TCO photodetector was significantly improved: 1,500% of that of the single-layered TCO device. This study suggests that, due to the electrical and optical benefits, double-layered TCO films are effective for enhancing the photoresponses of TCO photodetectors. This provides a useful approach for the design of photoelectric devices, including solar cells and photosensors.

Structural and Electrical Transport Properties of Zn Doped CuCrO2 by Pulsed Laser Deposition

  • Kim, Se-Yun;Seong, Sang-Yun;Chu, Man;Jo, Gwang-Min;U, Jin-Gyu;Lee, Jun-Hyeong;Kim, Jeong-Ju;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.256-256
    • /
    • 2010
  • 투명전극부터 디스플레이 산업에 이르기까지 광범위하게 응용되어지고 있고 개발되어지고 있는 투명전도산화물(TCO)은 ZnO, In2O3, SnO2 등을 기본으로 하는 n-type 재료가 대부분이다. 그러나 투명전도 산화물을 이용한 light emitting diode(LED), 투명한 태양전지, p-형 TFT와 같은 투명전자소자의 개발을 위해서는 p-type 소재가 필수적이다. p-type TCO 소재는 비교적 연구 개발 실적이 매우 부진한 실정이었다. 1997년 넓은 밴드갭을 가지는 ABO2(delafossite) 산화물이 p-type으로서 안정적이라는 것을 보고함에 따라 이에 대한 연구가 활발히 진행되고 있다. 현재 ABO2 형태를 가진 Delafossite구조 산화물이 가장 유망한 p-type 투명전도체 소재로 거론되고 있다. Delafossite 구조가 p-type 투명전도체에 적합한 결정구조인 이유는 밴드갭이 넓고 공유결합에 유리하기 때문이다. Delafossite구조는 상온에서 2종류의 polytype(상온에서 Rhombohedaral구조와 hexagonal 구조)이 존재하며 이들은 각각 3R 및 2H의 결정 구조를 가지고 있다. ABO2의 delafossite구조에서 Cu+의 배열은 c-축을 따라 Cu-O-Cr-O-Cu의 연속적인 층 구조로서 2차원연결로 보여 진다. 보고된 Cu- base delafossite구조를 가지는 재료들은 CuAlO2, CuGaO2, CuInO2 등 여러가지가 있다. 본 연구에서는 PLD를 이용하여 c-plane 사파이어 기판위에 성장된 delafossite구조인 CuCrO2박막의 특성을 알아보았다. p-type 특성을 위하여 CuCrO2에 Zn를 첨가하였으며 그에 따른 구조적 전기적 특성을 조사하였다. 성장온도와 산소분압을 $500{\sim}700^{\circ}C$, 0~10mTorr로 변화시켜 특성을 연구하였다. 성장온도 $700^{\circ}C$, 산소분압 10mTorr에서 c-plane 사파이어 기판위에 c-축 배향의 에피성장된 CuCrO2:Zn 박막을 얻을 수 있었다. Mg를 도핑함에 따른 p-type 특성보다 현저히 떨어지는 것을 확인하였다. 또한 동일한 조건임에도 특정한 이차상의 존재를 통해 도핑된 Zn의 위치를 추측할 수 있었다. 온도와 분압에 따른 결정성과 표면상태를 SEM을 통해서 확인하였다.

  • PDF

Electronic and Magnetic Properties of Ti1-xMxO2-δ (M=Co and Fe) Thin Films Grown by Sol-gel Method

  • Kim, Kwang-Joo;Park, Young-Ran;Ahn, Geun-Young;Kim, Chul-Sung;Park, Jae-Yun
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.109-112
    • /
    • 2005
  • Electronic and magnetic properties of $Ti_{1-x}M_xO_{2-\delta}$ (M=Co and Fe) thin films grown by sol-gel method have been investigated. Anatase and rutile $Ti_{1-x}Co_xO_{2-\delta}$ films were successfully grown on $Al_2O_3$ (0001) substrates and exhibited p-type electrical conductivity while the undoped films n-type conductivity. Room temperature vibrating sample magnetometry measurements on the anatase and rutile $Ti_{1-x}Co_xO_{2-\delta}$ films with same x ($=4.8 at.{\%}$) showed quite similar magnetic hysteresis curves with the saturation magnetic moment of $\~4 {\mu}_B$ per Co ion despite their differences in structural and electronic properties. Such giant magnetic moment is attributable to the unquenched orbital moment of the $Co^{2+}$ ions substituting the octahedral $Ti^{4+}$ sites. Similar ferromagnetic behavior was observed for $Ti_{1-x}Fe_xO_{2-\delta}$ films that are highly resistive compared to the Co doped samples. Saturation magnetic moment was found to decrease for higher x, i.e., $\~2$ and $\~1.5 {\mu}_B$ per Fe ion for x=2.4 and 5.8 at. $\%$, respectively. Conversion electron $M\ddot{o}ssbauer$ spectroscopy measurements predicted the coexistence of $Fe^{2+}$ and $Fe^{3+}$ ions at the octahedral sites of $Ti_{1-x}Fe_xO_{2-\delta}$.

Gas Sensing Characteristics of Nano Sized SnO2 Sensors for Various Co and Ni Concentration (Co, Ni 농도 변화에 따른 나노 SnO2 센서의 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.546-549
    • /
    • 2011
  • Nano-sized $SnO_2$ thick films were prepared by a screen-printing method onto $Al_2O_3$ substrates. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box as a function of the detection gas. The nano-sized $SnO_2$ thick film sensors were treated in a $N_2$ atmosphere. The structural properties of the nano $SnO_2$with a rutile structure according to XRD showed a (110) dominant $SnO_2$ peak. The particle size of $SnO_2$:Ni nano powders at Ni 8 wt% was about 45 nm, and the $SnO_2$ particles were found to contain many pores according to the SEM analysis. The sensitivity of the nano $SnO_2$-based sensors was measured for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in the target gases. The results showed that the best sensitivity of $SnO_2$:Ni and $SnO_2$:Co sensors for $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature was observed in $SnO_2$:Ni sensors doped with 8 wt% Ni. The response time of the $SnO_2$:Ni gas sensors was 10 seconds and recovery time was 15 seconds for the $CH_4$ and $CH_3CH_2CH_3$ gases.

The Single-Side Textured Crystalline Silicon Solar Cell Using Dielectric Coating Layer (절연막을 이용한 단면 표면조직화 결정질 실리콘 태양전지)

  • Do, Kyeom-Seon;Park, Seok-Gi;Myoung, Jae-Min;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.245-248
    • /
    • 2011
  • Many researches have been carried out to improve light absorption in the crystalline silicon solar cell fabrication. The rear reflection is applied to increase the path length of light, resulting in the light absorption enhancement and thus the efficiency improvement mainly due to increase in short circuit current. In this paper, we manufactured the silicon solar cell using the mono crystalline silicon wafers with $156{\times}156mm^2$, 0.5~3.0 ${\Omega}{\cdot}cm$ of resistivity and p-type. After saw damage removal, the dielectric film ($SiN_x$)on the back surface was deposited, followed by surface texturing in the KOH solution. It resulted in single-side texturing wafer. Then the dielectric film was removed in the HF solution. The silicon wafers were doped with phosphorus by $POCl_3$ with the sheet resistance 50 ${\Omega}/{\Box}$ and then the silicon nitride was deposited on the front surface by the PECVD with 80nm thickness. The electrodes were formed by screen-printing with Ag and Al paste for front and back surface, respectively. The reflectance and transmittance for the single-sided and double-sided textured wafers were compared. The double-sided textured wafer showed higher reflectance and lower transmittance at the long wavelength region, compared to single-sided. The completed crystalline silicon solar cells with different back surface texture showed the conversion efficiency of 17.4% for the single sided and 17.3% for the double sided. The efficiency improvement with single-sided textured solar cell resulted from reflectance increase on back surface and light absorption enhancement.

  • PDF

Effect of Growth Methods of InAs Quntum Dots on Infrared Photodetector Properties (InAs 양자점 형성 방법이 양자점 적외선 소자 특성에 미치는 효과)

  • Seo, Dong-Bum;Hwang, Je-hwan;Oh, Boram;Noh, Sam Kyu;Kim, Jun Oh;Lee, Sang Jun;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.659-662
    • /
    • 2018
  • We report the properties of infrared photodetectors based on two kinds of quantum dots(QDs): i) 2.0 ML InAs QDs by the Stranski-Krastanov growth mode(SK QDs) and ii) sub-monolayer QDs by $4{\times}[0.3ML/1nm\;In_{0.15}Ga_{0.85}As]$ deposition(SML QDs). The QD infrared photodetector(QDIP) structure of $n^+-n^-(QDs)-n^+$ is epitaxially grown on GaAs (100) wafers using molecular-beam epitaxy. Both the bottom and top contact GaAs layers are Si doped at $2{\times}10^{18}/cm^3$. The QD layers are grown with Si doping of $2{\times}10^{17}/cm^3$ and capped by an $In_{0.15}Ga_{0.85}As$ layer at $495^{\circ}C$. The photoluminescence peak(1.24 eV) of the SML QDIP is blue-shifted with respect to that (1.04 eV) of SK QDIPs, suggesting that the electron ground state of SML QDIP is higher than that of the SK QDIP. As a result, the photoresponse regime(${\sim}9-14{\mu}m$) of the SML QDIP is longer than that (${\sim}6-12{\mu}m$) of the SK QDIP. The dark current of the SML QDIP is two orders of magnitude smaller value than that of the SK QDIP because of the inserted $Al_{0.08}Ga_{0.92}As$ layer.

Surface reaction of $HfO_2$ etched in inductively coupled $BCl_3$ plasma ($BCl_3$ 유도결합 플라즈마를 이용하여 식각된 $HfO_2$ 박막의 표면 반응 연구)

  • Kim, Dong-Pyo;Um, Doo-Seunng;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.477-477
    • /
    • 2008
  • For more than three decades, the gate dielectrics in CMOS devices are $SiO_2$ because of its blocking properties of current in insulated gate FET channels. As the dimensions of feature size have been scaled down (width and the thickness is reduced down to 50 urn and 2 urn or less), gate leakage current is increased and reliability of $SiO_2$ is reduced. Many metal oxides such as $TiO_2$, $Ta_2O_4$, $SrTiO_3$, $Al_2O_3$, $HfO_2$ and $ZrO_2$ have been challenged for memory devices. These materials posses relatively high dielectric constant, but $HfO_2$ and $Al_2O_3$ did not provide sufficient advantages over $SiO_2$ or $Si_3N_4$ because of reaction with Si substrate. Recently, $HfO_2$ have been attracted attention because Hf forms the most stable oxide with the highest heat of formation. In addition, Hf can reduce the native oxide layer by creating $HfO_2$. However, new gate oxide candidates must satisfy a standard CMOS process. In order to fabricate high density memories with small feature size, the plasma etch process should be developed by well understanding and optimizing plasma behaviors. Therefore, it is necessary that the etch behavior of $HfO_2$ and plasma parameters are systematically investigated as functions of process parameters including gas mixing ratio, rf power, pressure and temperature to determine the mechanism of plasma induced damage. However, there is few studies on the the etch mechanism and the surface reactions in $BCl_3$ based plasma to etch $HfO_2$ thin films. In this work, the samples of $HfO_2$ were prepared on Si wafer with using atomic layer deposition. In our previous work, the maximum etch rate of $BCl_3$/Ar were obtained 20% $BCl_3$/ 80% Ar. Over 20% $BCl_3$ addition, the etch rate of $HfO_2$ decreased. The etching rate of $HfO_2$ and selectivity of $HfO_2$ to Si were investigated with using in inductively coupled plasma etching system (ICP) and $BCl_3/Cl_2$/Ar plasma. The change of volume densities of radical and atoms were monitored with using optical emission spectroscopy analysis (OES). The variations of components of etched surfaces for $HfO_2$ was investigated with using x-ray photo electron spectroscopy (XPS). In order to investigate the accumulation of etch by products during etch process, the exposed surface of $HfO_2$ in $BCl_3/Cl_2$/Ar plasma was compared with surface of as-doped $HfO_2$ and all the surfaces of samples were examined with field emission scanning electron microscopy and atomic force microscope (AFM).

  • PDF