• Title/Summary/Keyword: Al5083

Search Result 123, Processing Time 0.037 seconds

Formation of Thicker hard Alloy Layer on Aluminum Alloy by PTA Overlaying with Metal Powders (플라스마 아크 紛體肉盛法에 의한 Al 合金의 硬化厚膜 合金化層의 形成)

  • ;;中田一博;松田福久
    • Journal of Welding and Joining
    • /
    • v.11 no.2
    • /
    • pp.74-85
    • /
    • 1993
  • Effect of Si metal powders addition with the plasma transferred arc(PTA) overlaying process on characteristics of the alloyed layer in aluminum alloy(A5083) has been investigated. The overlaying conditions were 175-250A in plasma arc current, 500mm/min in travel speed, the 5-20g/min in powder feeding rate. Main results obtained are summarized as follows. 1)Sufficient size of molten pool on surface of base metal was required for forming an alloyed layer; in a fixed travel, the formation of alloyed layer with clear and beautiful surface depend upon the plasma arc current and powder feeding rate; the greater plasma arc current and the smaller powder feeding rate were, the better bead was formed. Optimum alloyed conditions by which an excellent alloyed bead obtained was 225A in plasma arc current. PTA process made it possible to form an alloyed layer with up to 67wt% Si. 2)Microstructure in the alloyed layer was in accord with prediction from the Al-Si phase diagram 3)The hardness of the alloyed layer increased in proportion to Si content. 4)As volume fraction of primary Si increased, the specific wearness of the alloyed layer was significantly improved. However, no further improvement was found when the volume fraction was greater than about 30%. 5)Utilizing the PTA process, a crack free alloyed layer with maximum hardness of about Hv 310 could be obtained.

  • PDF

A Study on the high velocity impact resistance of hybrid composite materials (하이브리드 복합재료의 고속충격 저항성에 관한 연구)

  • Sohn, Se-Won;Kim, Hee-Jae;Kim, Young-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.273-278
    • /
    • 2003
  • Recently, high-performance hybrid composite materials have been used for various industrial fields because of their superior high strength, high stiffness and lower weight. In this study, manufactured hybrid composite materials are composed of two parts. One is hard-anodized Al5083-O alloy as a face material and the other is high strength aramid fiber ($Twaron^{(R)}$ CT709) laminates as a back-up material. Resistance to penetration is determined by protection ballistic limit($V_{50}$, a static velocity with 50% probability for complete penetration) test method. $V_{50}$ tests with $0^{\circ}$obliquity at room temperature were conducted with 5.56mm ball projectiles that were able to achieve near or complete penetration during high velocity impact tests.

  • PDF

The welding Characteristics of the Insertion Device Vacuum Chamber of PLS Storage Ring (가속기 저장링 삽입장치 진공 챔버의 용접)

  • 최만호;한영진;김창균;정진화;권영각
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.32-38
    • /
    • 1999
  • PAL(Pohang Accelerator Laboratory) designed and manufactured a 5m-long straight vacuum chamber to adopt U7 undulator that is the first insertion device. Top and bottom plates of the vacuum chamber were made of Al alloy A5083-H321, and welded together by the GTAW welding. The leak rate is less than 1×{TEX}$10^{-10}${/TEX} torr·ℓ/s with negligible welding deformation. The pressure has been maintained below {TEX}$10^{-10}${/TEX} torr after installation. This paper reports the welding process and the method applied to achieve ultimate vacuum performance and t satisfy integrity of welds.

  • PDF

Effect of processing time on durability for anodized 5000 series Al alloy (양극산화된 5000계열 알루미늄 합금의 내구성에 미치는 공정시간의 영향)

  • Lee, Seung-Jun;Han, Min-Su;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.320-320
    • /
    • 2015
  • 표면개질이란 재료 본연의 특성만으로 원하는 성능과 기능을 발휘할 수 없을 때 기재 표면에 열에너지, 응력 등을 부가하여 새로운 표면층을 형성하는 방법이다. 특히 양극산화 기술을 이용해 형성된 피막은 경도 및 내마모성 등 기계적 성질이 우수하고, 공정조건 등을 변화시켜 피막 두께와 형상 조절이 용이하여 센서, 필터, 광학용 박막 그리고 전해콘덴서 등에도 주로 사용되고 있다. 본 연구에서는 5083 알루미늄 합금을 이용해 해양환경에서 우수한 내구성을 보유할 수 있는 최적의 양극산화 공정시간을 선정하고자 캐비테이션 실험을 실시하였다. 실험 결과, 공정시간 40분에서 안정적인 산화피막 생성과 함께 탁월한 내캐비테이션 특성을 나타냈다.

  • PDF

Improvement of Anti-Corrosion Characteristics for Light Metal in Surface Modification with Sulfuric Acid Solution Condition (경금속 표면개질 시 황산 수용액 조건에 따른 내식성 개선 효과)

  • Lee, Seung-Jun;Han, Min-Su;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.223-229
    • /
    • 2015
  • Surface modification is a technology to form a new surface layer and overcome the intrinsic properties of the base material by applying thermal energy or stress onto the surface of the material. The purpose of this technique is to achieve anti-corrosion, beautiful appearance, wear resistance, insulation and conductance for base materials. Surface modification techniques may include plating, chemical conversion treatment, painting, lining and surface hardening. Among which, a surface modification process using electrolytes has been investigated for a long time in connection with research on its industrial application. The technology is highly favoured by various fields because it provides not only high productivity and cost reduction opportunities, but also application availability for components with complex geometry. In this study, an electrochemical experiment was performed on the surface of 5083-O Al alloy to determine an optimal electrolyte temperature, which produces surface with excellent corrosion resistance under marine environment than the initial surface. The experiment result, the modified surface presented a significantly lower corrosion current density with increasing electrolyte temperature, except for $5^{\circ}C$ of electrolyte temperature at which premature pores was created.

A Study on the Cyclic Hardening Property and the Low Cycle Fatigue Behavior of Marine Materials (박용재료(舶用材料)의 반복경화(反復硬化) 및 저(低)싸이클 피로특성(疲勞特性)에 관한 연구)

  • S.M. Cho;K. Horikawa
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.108-116
    • /
    • 1991
  • In the non-linear behavior of many materials, there is difference between the monotonic behavior by static load and the cyclic behavior by cyclic load. In particular, the short fatigue cracks to propagate in elasto-plastic stress concentrations(notches), are governed significantly by the cyclic behavior of materials. Accordingly, it is needed to investigate and compare the monotonic and cyclic behavior of materials. In the pressent study, the stress-strain relations of materials by monotonic and cyclic load tests were examined for 2 kinds of steels(SS41, HT80) and 5 kinds of Al-alloys(A5083-O, A6N01-T5, A7N01-T4, A7016-T6, A7178-T6). And the constants for mechanical properties of the materials were determined by experimental results, Moreover, when a notch was subjected to cyclic load, the effect of cyclic hardening property of materials on the variation of stress-strain amplitude in the notch tip was discussed by the application of Neuber's rule and experiments for a center notched plate.

  • PDF

DIAGNOSTICS OF PLASMA INDUCED IN Nd:YAG LASER WELDING OF ALUMINUM ALLOY

  • Kim, Jong-Do;Lee, Myeong-Hoon;Kim, Young-Sik;Seiji Katayama;Akira Matsunawa
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.612-619
    • /
    • 2002
  • The dynamic behavior of Al-Mg alloys plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser irradiation. The keyhole fluctuated both in size and shape and its fluctuation period was about 440 ${\mu}{\textrm}{m}$. This instability has been estimated to be caused by the evaporation phenomena of metals with different boiling point and latent heats of vaporization. Therefore, the authors have conducted the spectroscopic diagnostics of plasma induced in the pulsed YAG laser welding of Al-Mg alloys in air and argon atmospheres. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg line, as well as strong molecular spectrum of AlO, MgO and AIH. It was confirmed that the resonant lines of Al and Mg were strongly self-absorbed, in particular in the vicinity of pool surface. The self-absorption of atomic Mg line was more eminent in alloys containing higher Mg. These facts showed that the laser-induced plasma was relatively a low temperature and high density metallic vapor. The intensities of molecular spectra of AlO and MgO were different each other depending on the power density of laser beam. Under the low power density irradiation condition, the MgO band spectra were predominant in intensity, while the AlO spectra became much stronger in higher power density. In argon atmosphere the band spectra of MgO and AlO completely vanished, but AlH molecular spectra was detected clearly. The hydrogen source was presumably the hydrogen solved in the base Metal, absorbed water on the surface oxide layer or H$_2$ and $H_2O$ in the shielding gas. The temporal change in spectral line intensities was quite similar to the fluctuation of keyhole. The time average plasma temperature at 1 mm high above the surface of A5083 alloy was determined by the Boltzmann plot method of atomic Cr lines of different excitation energy. The obtained electron temperature was 3, 280$\pm$150 K which was about 500 K higher than the boiling point of pure aluminum. The electron number density was determined by measuring the relative intensities of the spectra1lines of atomic and singly ionized Magnesium, and the obtained value was 1.85 x 1019 1/㎥.

  • PDF

A Study on the Infrared Local Heat Treatment of Curved Line for Aluminum Alloy Sheet (알루미늄 판재의 성형성 향상을 위한 적외선 국부 열처리법의 곡선형태 적용에 관한 연구)

  • Lee, E.H.;Yang, D.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.87-92
    • /
    • 2018
  • Auto industries have tried to employ lightweight alloys to improve the fuel efficiency of manufactured vehicles, as the environmental concern becomes an important issue. Even though the aluminum alloy is one of the most appropriate lightweight alloys for auto parts, the low formability of an aluminum alloy has been an obstacle to its application. In order to resolve the low formability problem, a recent study (Lee et al., 2017 [1]) showed that the infrared (IR) local heat treatment can improve the formability with a reduction of heating energy. However, the aforementioned study was limited to only a linear line heating. Since many of the available auto parts as applicable to vehicle manufacturing have a curved line shape, the heating experiments for a curved line should be studied. The possibility of building IR lamps having complex shapes is an advantage of the IR lamp, since it can control the heating shape. This work conducted the IR local heat treatment for the curved line. The experimental results show that the IR local heat treatment can improve the formability of the aluminum alloy for curved line. Additionally, it is shown that the IR local heat treatment also reduces the heating energy when it is compared with the furnace heating which heats a blank as a whole. A numerical simulation with a stress-based forming limit diagram also supports the experimental results.

The Low Temperature Toughness of A15083-O Welding Zone According to the Mixing Shield Gas Ratio (보호가스 혼합비율에 따른 Al5083-O 용접부의 저온 인성에 관한 연구)

  • 정재강;양훈승;이동길
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.762-768
    • /
    • 2002
  • In this study, the low temperature toughness was evaluated by using the instrumented Charpy impact testing procedures for A15083-O aluminum alloy used in the LNG carrying and storage tank. The specimens were GMA(Gas Metal Arc) welded with four different mixing shield gas ratios (Ar100%+He0%, Ar67%+He33%, Ar50%, and Ar33%+He67%), and tested at four different temperatures(+25, -30, -85, and $-196^{\circ}C$) in order to investigate the influence of the mixing shielding gas ratio and the low temperature. The specimens were divided into base metal, weld metal, fusion line, and HAZ specimen according to the notch position. From experiment the maximum load and displacement were shown the highest and He lowest at $-196^{\circ}C$ than the other test temperatures. The absorption energy of weld metal notched specimens was not nearly depends on test temperature and mixing shield gas ratio because the casting structure was formed in weld metal zone by melting welding wire. On the other hand, the others specimens was shown that the lower temperature, the higher absorption energy slightly up to $-85^{\circ}C$ but the energy was decreased so mush at $-196^{\circ}C$.

A Study on the Optimal Design for Lightweight Vehicle Dash (차량 경량화를 위한 최적설계에 관한 연구)

  • Lee, Gyung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.14-20
    • /
    • 2020
  • Currently, the automotive market is intensively researching eco-friendly vehicles such as EV vehicles and hydrogen vehicles. Further, research and developments for the future markets such as autonomous vehicles and the connective cars are coped up continuously along with the rising fuel economy regulations and the emission regulations. In this development, various sensors, batteries, and control devices are fused in order to decrease the weight of the vehicle. Moreover, since the fuel economy regulation is an issue, research on the weight reduction of body parts is underway. Therefore, in this work, a study is conducted to obtain the optimal design of the Dash part that separates the engine room and the passenger seat of the vehicle body by combining lightweight materials with high rigidity materials. The optimal design was obtained using the Finite Element Analysis. Further, AL5083 was used as the lightweight material and ASBC1470 was used for high strength materials. The parts made with this combination of materials had strength equivalent to that of the existing steel and the weight was reduced by 10%.