• Title/Summary/Keyword: Al2O3 Thin Film

Search Result 584, Processing Time 0.029 seconds

Sputtered Al-Doped ZnO Layers for Cu2ZnSnS4 Thin Film Solar Cells

  • Lee, Kee Doo;Oh, Lee Seul;Seo, Se-Won;Kim, Dong Hwan;Kim, Jin Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.688-688
    • /
    • 2013
  • Al-doped ZnO (AZO) thin films have attracted a lot of attention as a cheap transparent conducting oxide (TCO) material that can replace the expensive Sn-doped In2O3. In particular, AZO thin films are widely used as a window layer of chalcogenide-based thin film solar cells such as Cu(In,Ga)Se2 and Cu2ZnSnS4 (CZTS). Mostly important requirements for the window layer material of the thin film solar cells are the high transparency and the low sheet resistance, because they influence the light absorption by the activelayer and the electron collection from the active layer, respectively. In this study, we prepared the AZO thin films by RF magnetron sputtering using a ZnO/Al2O3 (98:2wt%) ceramic target, and the effect of the sputtering condition such as the working pressure, RF power, and the working distance on the optical, electrical, and crystallographic properties of the AZO thin films was investigated. The AZO thin films with optimized properties were used as a window layer of CZTS thin film solar cells. The CZTS active layers were prepared by the electrochemical deposition and the subsequent sulfurization process, which is also one of the cost-effective synthetic approaches. In addition, the solar cell properties of the CZTS thin film solar cells, such as the photocurrent density-voltage (J-V) characteristics and the external quantum efficiency (EQE) were investigated.

  • PDF

Characteristic of Al-In-Sn-ZnO Thin Film Prepared by FTS System with Hetero Targets

  • Hong, Jeong-Soo;Kim, Kyung-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.2
    • /
    • pp.76-79
    • /
    • 2011
  • In order to improve efficiency and make a new material thin film, we prepared the Al-In-Sn-ZnO thin film on a glass substrate at room temperature using a Facing Target Sputtering (FTS) system. The FTS system was designed to array two targets that face each other. Two different kinds of targets were installed on the FTS system. We used an ITO ($In_2O_3$ 90wt%, $SnO_2$ 10wt%) target and an AZO (ZnO 98wt%, $Al_2O_3$ 2wt%) target. The AIZTO films were deposited using different applied powers to the targets. The as-deposited AIZTO thin films were investigated using a UV/VIS spectrometer, an X-ray diffratometer (XRD), and Energy Dispersive X-ray spectroscopy (EDX).

Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:Al and ITO Transparent Conducting layers (플랙시블 염료태양전지 특성에 미치는 ZnO 및 ITO의 영향)

  • Kim, Ji-Hoon;Kwak, Dong-Joo;Sung, Youl-Moon;Choo, Young-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1096_1097
    • /
    • 2009
  • Aluminium doped zinc oxide(ZnO:Al) thin film, which is mainly used as a transparent conducting electrode in electronic devices, has many advantages compared with conventional indium tin oxide(ITO). In this paper in order to investigate the possible application of ZnO:Al thin films as a transparent conducting electrode for flexible film-typed dye sensitized solar cell (FT-DSCs), ZnO:Al and ITO thin films were prepared on the polyethylene terephthalate (PET) substrate by r. f. magnetron sputtering method. Specially one-inched FT-DSCs using either a ZnO:Al or ITO electrode were also fabricated separately under the same manufacturing conditions. Some properties of both the FT-DSCs with ZnO:Al and ITO transparent electrodes, such as conversion efficiency, fill factor, and photocurrent were measured and compared with each other. The results showed that by doping the ZnO target with 2 wt% of $Al_2O_3$, the film deposited at discharge power of 200W resulted in the minimum resistivity of $2.2\times10^{-3}\Omega/cm$ and at ransmittance of 91.7%, which are comparable with those of commercially available ITO. Two types of FT-DSCs showed nearly the same tendency of I-V characteristics and the same value of conversion efficiencies. Efficiency of FT-DSCs using ZnO:Al electrode was around 2.6% and that of fabricated FT-DSCs using ITO was 2.5%. This means that ZnO:Al thin film can be used in FT-DSCs as a transparent conducting layer.

  • PDF

Influence on the Chemical Durability of $B_2O_3-SiO_2$ and $Al_2O_3-SiO_2$ Thin Films at the Addition of $P_2O_5$ ($P_2O_5$의 첨가가 $B_2O_3-SiO_2$$Al_2O_3-SiO_2$ 박막의 화학적내구성에 미치는 영향)

  • 황규석;김병훈;최석진
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.615-622
    • /
    • 1993
  • In order to increase chemical durability of thin films in binary system B2O3-SiO2 and Al2O3-SiO2 on the slide glass by the dip-coating technique from TEOS(Tetraethyl Orthosilicate) and boric acid or aluminum nitrate, phosphoric acid(5~20mol%) was added, respectively. Corrosion of acid and alkali of samples treated with 1N, HCl, NaOH and distilled water at 10$0^{\circ}C$ for 15 minute, were measured IR transmittance and variance of transmittance at visible range. Surface structure of thin film was investigated with SEM and formation of crystal phase according to additiion of phosphoric acid was measrued with XRD. In Al2O3-SiO2 system, change of remarkable characteristic was not obtained at the addition of P2O5 but transmittance of thin film was decreased with addition of P2O5 in B2O3-SiO2 system.

  • PDF

Low-temperature Epitaxial Growth of a Uniform Polycrystalline Si Film with Large Grains on SiO2 Substrate by Al-assisted Crystal Growth

  • Ahn, Kyung Min;Kang, Seung Mo;Moon, Seon Hong;Kwon, HyukSang;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.103-108
    • /
    • 2013
  • Epitaxial growth of a high-quality thin Si film is essential for the application to low-cost thin-film Si solar cells. A polycrystalline Si film was grown on a $SiO_2$ substrate at $450^{\circ}C$ by a Al-assisted crystal growth process. For the purpose, a thin Al layer was deposited on the $SiO_2$ substrate for Al-assisted crystal growth. However, the epitaxial growth of Si film resulted in a rough surface with humps. Then, we introduced a thin amorphous Si seed layer on the Al film to minimize the initial roughness of Si film. With the help of the Si seed layer, the surface of the epitaxial Si film was smooth and the crystallinity of the Si film was much improved. The grain size of the $1.5-{\mu}m$-thick Si film was as large as 1 mm. The Al content in the Si film was 3.7% and the hole concentration was estimated to be $3{\times}10^{17}/cm^3$, which was one order of magnitude higher than desirable value for Si base layer. The results suggest that Al-doped Si layer could be use as a seed layer for additional epitaxial growth of intrinsic or boron-doped Si layer because the Al-doped Si layer has large grains.

The Optical Properties of Sb2O3/Na3AlF6/Sb2O3/Cr Multi Layered Thin Films by EMP Simulation (EMP시뮬레이션을 활용한 Sb2O3/Na3AlF6/Sb2O3/Cr 다층박막의 광 특성)

  • Kim, Jun-Sik;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.376-380
    • /
    • 2008
  • The optical properties of multi layered thin films with $Sb_2O_3/Na_3AlF_6/Sb_2O_3/Cr$ were simulated by using EMP(Essential Macleod Program). EMP is a comprehensive software package to design and analyse the optical characteristics of multi-layered thin film. $Sb_2O_3$ and $Na_3AlF_6$ were selected as a high refractive index and low refractive index material respectively. Additionally Cr was chosen as mid reflective material. Optical properties including color effect were systematically studied in terms of different optical thickness of low refractive index material. The optical thickness of $Na_3AlF_6$ was changed as 0.25, 0.5, 0.75 and $1.0\lambda$. The film with 0.25, 0.5, 0.75 and $1.0\lambda$ of optical thickness showed mixed color range between purple and red range, yellowish green and bluish green, purple and mixed color range of green and purple respectively.

Effect of ZnO buffer layer on the property of ZnO thin film on $Al_{2}O_{3}$ substrate (사파이어 기판 위에 증착된 ZnO 박막 특성에 대한 ZnO 버퍼층의 영향)

  • Kim, Jae-Won;Kang, Jeong-Seok;Kang, Hong-Seong;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.140-142
    • /
    • 2003
  • ZnO thin films are demanded for device applications, so ZnO buffer layer was used to improve for good properties of ZnO thin film. In this study, the structural, electrical and optical properties of ZnO thin films deposited with various buffer thickness was investigated by X-ray diffraction (XRD), Hall measurements, Photoluminescence(PL). ZnO buffer layer and ZnO thin films on sapphire($Al_{2}O_{3}$) substrate have been deposited $200^{\circ}C$ and $400^{\circ}C$ respectively by pulsed laser deposition. It is observed the variety of lattice constant of ZnO thin film by (101) peak position shift with various buffer thickness. It is founded that ZnO thin film with buffer thickness of 20 nm was larger resistivity of 200 factor and UV/visible of 2.5 factor than that of ZnO thin films without buffer layer. ZnO thin films with buffer thickness of 20 nm have shown the most properties.

  • PDF

Study on the Atomic Layer Deposition System and Process of the MgO Thin Layer for the Thin Film Encapsulation of OLED (OLED의 Thin Film Encapsulation을 위한 MgO 박막의 원자층 증착 장치 및 공정에 관한 연구)

  • Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.22-26
    • /
    • 2021
  • Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation in the organic light emitting diodes (OLED). Of those, a laminated structure of Al2O3 and MgO were applied to provide efficient barrier performance for increasing the stability of devices in air. Atomic layer deposition (ALD) method is known as the most promising technology for making the laminated Al2O3/MgO and is used to realize a thin film encapsulation technology in organic light-emitting diodes. Atomic layer deposited inorganic films have superior barrier performance and have advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the control system of the MgCP2 precursor for the atomic layer deposition of MgO was established in order to deposit the MgO layer stably by the injection time of second level and the stable heating temperature. The deposition rate was obtained stably to be from 4 to 10 Å/cycle using the injection pulse times ranging from 3 to 12 sec and a substrate temperature ranging from 80 to 150 ℃.

Amorphous silicon thin-film solar cells with high open circuit voltage by using textured ZnO:Al front TCO (ZnO:Al 투명전도막을 이용한 높은 개방전압을 갖는 비정질 실리콘 박막 태양전지 제조)

  • Lee, Jeeong-Chul;Ahn, Se-Hin;Yun, Jae-Ho;Song, Jin-Soo;Yoon, Kyung-Hoon
    • New & Renewable Energy
    • /
    • v.2 no.3
    • /
    • pp.31-36
    • /
    • 2006
  • Superstrate pin amorphous silicon thin-film(a-Si:H) solar cells are prepared on $SnO_2:F$ and ZnO:Al transparent conducting oxides(TCO) in order to see the effect of TCO/p-layers on a-Si:H solar cell operation. The solar cells prepared on textured ZnO:Al have higher open circuit voltage VOC than cells prepared on $SnO_2:F$. Presence of thin microcrystalline p-type silicon layer(${\mu}c-Si:H$) between ZnO:Al and p a-SiC:H plays a major role by causing improvement in fill factor as well as $V_{OC}$ of a-Si:H solar cells prepared on ZnO:Al TCO. Without any treatment of pi interface, we could obtain high $V_{OC}$ of 994mV while keeping fill factor(72.7%) and short circuit current density $J_{SC}$ at the same level as for the cells on $SnO_2:F$ TCO. This high $V_{OC}$ value can be attributed to modification in the current transport in this region due to creation of a potential barrier.

  • PDF