• Title/Summary/Keyword: Al2O3 박막

Search Result 632, Processing Time 0.024 seconds

Orientation control of $CuCrO_2$ films on different substrate by PLD (기판에 따른 p-type $CuCrO_2$ 박막의 성장방향변화)

  • Kim, Se-Yun;Sung, Sang-Yun;Jo, Kwang-Min;Hong, Hyo-Ki;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.142-142
    • /
    • 2011
  • Epitaxial $CuCrO_2$ thin films have been grown on single crystal substrate of c-plane $Al_2O_3$, $SrTiO_3$, YSZ and Quarts by laser ablation of a $CuCrO_2$ target using 266nm radiation from a Nd:YAG laser. X-ray measurements indicate that the $CuCrO_2$ grows epitaxially on all substrate, with its orientation dependent on the kinds of substrates. Most of the layer were polycrystalline with (001), (015) and random as the dominant surface orientation on c-plane YSZ, $SrTiO_3$ and quarts substrate, respectively. (001) orientated $CuCrO_2$ grows on C-plane $Al_2O_3$ and YSZ substrate, (015) orientated $CuCrO_2$ films are found on c-plane $SrTiO_3$ substrate and random orientated $CuCrO_2$ films grows on quarts substrate. These data are compared with the in-plane orientation and the mismatch of the $CuCrO_2$ and each substrate lattices in an attempt to relate the preferred orientation to the plane of the sapphire on which it is grown. Further characterization show that the grain size of the films increases for a substrate temperature increase, whereas the electrical properties of $CuCrO_2$ thin films depend upon their crystalline orientation.

  • PDF

Junction Area Dependence of Tunneling Magnetoresistance in Spin-dependent Tunneling Junction with Natural $Al_2O_3$Barrier (자연산화 $Al_2O_3$장벽층을 갖는 스핀의존 터널링 접합에서 자기저항특성의 접합면적 의존성)

  • 이긍원;이상석
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.202-210
    • /
    • 2001
  • Spin dependent tunneling (SDT) junction devices of Ta/NiFe/Ta/NiFe/FeMn/NiFe/AlOx/CoFe/NiFe/Al with in-situ naturally oxidized Al barrier were fabricated using ion beam deposition and dc sputtering in UHV chamber of 10$^{-9}$ Torr. The maximum tunneling magnetoresistance (TMR) and the product resistance by junction (R$_{j}$ A) are 16-17% and 50-60 $\Omega$${\mu}{\textrm}{m}$$^2$, respectively. The values of TMR and (R$_{j}$ A) with field annealing were slightly increased. The TMR and (R$_{j}$ A) dependence versus the junction area size was observed. These results were explained by using sheet resistance effect of bottom electrode and spin channel effects.

  • PDF

Effects of Na on CIGS thin film solar cell (Na이 CIGS 박막 태양전지에 미치는 영향에 관한 연구)

  • Kim, Chaewoong;Kim, Daesung;Kim, Taesung;Kim, Jinhyok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.62.1-62.1
    • /
    • 2010
  • CIS(CuInSe2)계 화합물 태양전지는 높은 광흡수계수와 열적 안정성 및 조성 조절을 통한 밴드갭 조절이 용이해 고효율 박막 태양전지로 각광 받고 있다. 또한 CIGS 태양전지는 기존의 유리기판 대신 유연한 기판을 사용해 flexible 태양전지 제조가 가능하다. 이러한 유연기판은 보통 stainless steel과 같은 금속 기판이 많이 사용되는데 기존의 soda-lime glass 기판과는 달리 금속기판에는 Na이 첨가되어 있지 않아 별도의 Na첨가를 필요로 한다. Na은 CIGS 흡수층의 조성조절을 용이하게 하여 태양전지의 변환 효율을 향상시키는 역할을 한다. 본 연구에서 기판은 Na이 첨가되어있지 않은 corning glass를 사용 하였으며 NaF를 이용해 Mo가 증착된 기판에 NaF의 두께를 달리하며 증착해 CIGS 흡수층의 grain 사이즈를 비교 하였으며 그 후 태양전지 소자를 제조해 광전특성을 분석하였다. 후면 전극으로 약60nm 두께의 Mo를 DC Sputtering 방법을 이용해 증착 하였다. buffer층으로는 약 50nm의 CdS층을 CBD방법을 이용하여 제조 하였으며 TCO 층으로 약 50nm의 i-ZnO와 약 450nm의 Al-ZnO를 RF Sputtering방법으로 증착 하였다. 마지막으로 앞면 전극으로 약 $1{\mu}m$의 Al을 Thermal Evaporation방법으로 증착하였다. 태양전지 소자의 면적은 $0.49cm^2$로 효율을 비교 분석하였다.

  • PDF

Fabrication of ZnO thin film gas sensor for detecting $(CH_3)_3N$ gas ($(CH_3)_3N$ 가스 감지용 ZnO 박막 가스 센서의 제조)

  • 신현우;박현수;윤동현;홍형기;권철한;이규정
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 1995
  • Highly sensitive and mechanically stable gas sensors have been fabricated using the microfabrication and micromaching techniques. The sensing material used to detect the offensive trimethylarnine ((CH$_{3}$)$_{3}$N) gas is 6 wt% $Al_{2}$O$_{3}$-doped, 1000.angs.-thick ZnO deposited by r. f. magnetron sputtering. The optimum operating temperature of the sensor is 350.deg.C and the corresponding heater power is about 85mW. Excellent thermal insulation is achieved by the use of a double-layer structure of 0.2.mu.m -thick silicon nitride and 1.4.mu.m-thick phosphosilicate glass(PSG) prepared by low pressure chemical vapor deposition(LPCVD) and atmospheric pressure chemical vapor deposition(APCVD), respectively. The sensors are mechanically stable enough to endure at least 43, 200 heat cycles between room temperature and 350.deg. C.

  • PDF

Preparation of AI-21Ti-23Cr High Temperature Protective Coating for TiAo Intermatallic Compounds by RF Magnetron Sputtering (RF Magnetron Sputtering에 의한 금속간화합물 TiAI 모재위의 AI-21Ti-23Cr 고온내산화코팅)

  • Park, Sang-Uk;Park, Jeong-Yong;Lee, Ho-Nyeon;O, Myeong-Hun;Wi, Dang-Mun
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.742-751
    • /
    • 1996
  • Ti-48Al(at.%) specimens were coated with Al-21Ti-23Cr(at.%) film by RF magnetron sputtering. Ti-48Al specimen coated at 200, 0.8Pa and 573K showed the best oxidation resistance property in the isothermal oxidation test. Al-21Ti-23Cr film was amophous after depostion, but crystallized and fromed a protective ${Al}_{2}{O}_{3}$ layer on the surface during oxidation. Ti-48Al specimens coated at 573K have been sassessed by isothermal oxidation test for 100 hours at 1073K, 1173K and 1273K. The mass gain curves showed that parabolic stage continued at al tested temperature range in isothermal oxidation test, and the excellent oxidation resistance is attriutable to the formation of a protective ${Al}_{2}{O}_{3}$ layer on the surface of Al-21Ti-23Cr film. After oxidation test at 1273K, the matrix of Al-21Ti-23Cr film had transformed into TiAlCr phase due to the depletion of Al during oxidation and the diffusion of Ti from the substrate, and the extent of mass gain of the specimen increased compared with that of specimens tested at lower temperature.

  • PDF

Fabrication and Properties of $\alpha$-$Fe_{2}O_{3}$Thin Films Prepared by RF-magnetron sputtering method (RF-magnetron sputtering 법을 이용한 개스 센서용 $\alpha$-$Fe_{2}O_{3}$박막의 제조 및 특성)

  • 최진영;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.499-502
    • /
    • 2000
  • In this study, $\alpha$-Fe$_2$O$_3$thin films were deposited on $Al_2$O$_3$substrate by RF magnetron sputtering method from a $\alpha$-Fe$_2$O$_3$target(99.9%). The sputtering atmosphere was Ar and 80%Ar:20%O$_2$mixture in a total gas pressure of 1~3mTorr. As-deposited $\alpha$-Fe$_2$O$_3$thin films were heated to 300, 400, 500, $600^{\circ}C$ for 5hr in oxygen atmosphere. The structure and the morphology of $\alpha$-Fe$_2$O$_3$thin films were examined by scanning Electron microscopy(SEM) and the crystal structure was analyzed by X-Ray Diffractometer(XRD). The microstructure of the annealed $\alpha$-Fe$_2$O$_3$films exhibits rather gross particle and the grain size was less than 100nm. Since the grain size was very small, the gas sensitivity was expected to be improved.

  • PDF

The non-uniformity study of AZO thin films by pulse magnetron sputtering for large area (대면적 펄스 마그네트론 스퍼터링에 의한 AZO 박막의 균일도 문제)

  • Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.23-24
    • /
    • 2008
  • Bipolar pulsed dc magnetron sputtering을 이용하여 태양전지의 투명 전도막용으로 유리기판 위에 Al doped ZnO (AZO) 박막을 증착하였다. $400{\times}400\;mm$의 대면적 기판에 증착하기 위해서 $5{\times}25$ inch 대형 사각 AZO target (Al 2 wt%)을 사용했고, $50{\sim}250\;kHz$의 bipolar pulse를 인가하였다. 실제로는 $400{\times}400\;mm$ 면적의 기판에 slide glass 16개를 사용했으며, 약 700 nm 두께에서 두께와 투과도, 비저항의 균일도를 평가하였다. Bipolar pulse의 주파수 150 kHz일 때, 가장 우수한 특성을 갖는 AZO가 증착되었으며, $2.13{\times}10^{-3}{\Omega}{\cdot}cm$의 비저항에 가시광선 영역에서 82%의 투과율을 보였다. 또한, $400{\times}400\;mm$ 대면적 기판에서의 두께와 투과도, 비저항의 불균일도는 각각 5%, 1%, 9% 였다.

  • PDF

Structural characterization of aluminum oxide precipitation formed on the surface of nickel-carbon film (니켈/탄소 복합체 박막 표면에 형성된 알루미늄 산화물의 구조 분석)

  • Lee, Min-Hui;Na, Hyeon-Ung;Choe, Han-Sin;Kim, Gyu-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.174-175
    • /
    • 2014
  • We fabricated a Ni/C composite thick film on ${\alpha}-Al_2O_3$ substrate. A number of precipitations were observed on the film surface. Structural characterization was performed on the observed precipitations using transmission electron microscopy (TEM) with help of the elemental mapping, electron diffraction (ED) and ED simulation. The structural characterization revealed that the precipitation is ${\theta}-Al_2O_3$ having the space group of C2/m (Monoclinic).

  • PDF

Surface analysis of reactively ion-etched aluminum films in $CF_4$ plasma ($CF_4$ 플라즈마에서 반응성 이온식각한 알루미늄 박막의 표면분석)

  • 김동원;이원종
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.351-357
    • /
    • 1995
  • The surface layer of the aluminum film reactively ion etched in $CF_4$ plasma was ana alyzed by using XPS. $AlF_3$ which is nonvolatile is formed at the aluminum surface. As the analyzed depth increases, the intensity of the $Al_{2p}$ peak of Al - F bonds decreases while that of a aluminum metallic bond increases. The thickness of the $AlF_x$ surface layer is 50~100 $\AA$ and the deep penetration of fluorine atoms is attributed to the mixing effect by the bombardment of incident particles. For the aluminum oxide film which is etched in $CF_4$ plasma under the same conditions, oxygen atoms are substituted by fluorine atoms to form $$AIF_x$ surface layer, which is m much thinner than that formed on aluminum surface.

  • PDF

Enhanced Device Performance of IZO-based oxide-TFTs with Co-sputtered $HfO_2-Al_2O_3$ Gate Dielectrics (Co-sputtered $HfO_2-Al_2O_3$을 게이트 절연막으로 적용한 IZO 기반 Oxide-TFT 소자의 성능 향상)

  • Son, Hee-Geon;Yang, Jung-Il;Cho, Dong-Kyu;Woo, Sang-Hyun;Lee, Dong-Hee;Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.1-6
    • /
    • 2011
  • A transparent oxide thin film transistors (Transparent Oxide-TFT) have been fabricated by RF magnetron sputtering at room temperature using amorphous indium zinc oxide (a-IZO) as both of active channel and source/drain, gate electrodes and co-sputtered $HfO_2-Al_2O_3$ (HfAIO) as gate dielectric. In spite of its high dielectric constant > 20), $HfO_2$ has some drawbacks including high leakage current and rough surface morphologies originated from small energy band gap (5.31eV) and microcrystalline structure. In this work, the incorporation of $Al_2O_3$ into $HfO_2$ was obtained by co-sputtering of $HfO_2$ and $Al_2O_3$ without any intentional substrate heating and its structural and electrical properties were investigated by x-ray diffraction (XRD), atomic force microscopy (AFM) and spectroscopic ellipsometer (SE) analyses. The XRD studies confirmed that the microcrystalline structures of $HfO_2$ were transformed to amorphous structures of HfAIO. By AFM analysis, HfAIO films (0.490nm) were considerably smoother than $HfO_2$ films (2.979nm) due to their amorphous structure. The energy band gap ($E_g$) deduced by spectroscopic ellipsometer was increased from 5.17eV ($HfO_2$) to 5.42eV (HfAIO). The electrical performances of TFTs which are made of well-controlled active/electrode IZO materials and co-sputtered HfAIO dielectric material, exhibited a field effect mobility of more than $10cm^2/V{\cdot}s$, a threshold voltage of ~2 V, an $I_{on/off}$ ratio of > $10^5$, and a max on-current of > 2 mA.