• Title/Summary/Keyword: Al2024 composite

Search Result 26, Processing Time 0.018 seconds

Hydrophobic modification conditions of Al2O3 ceramic membrane and application in seawater desalination

  • Lian li;Zhongcao Yang;Lufen Li
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • 1H,1H,2H,2H-perfluorodecytriethoxysilane (C16H19F17O3Si) be successfully applied to the hydrophobic modification of Al2O3 tubular ceramic membrane. Taking the concentration of modification solution, modification time, and modification temperature as factors, orthogonal experiments were designed to study the hydrophobicity of the composite membranes. The experiments showed that the modification time had the greatest impact on the experimental results, followed by the modification temperature, and the modification solution concentration had the smallest impact. Concentration of the modified solution 0.012 mol·L-1, modification temperature 30 ℃ and modification time 24 h were considered optimal hydrophobic modification conditions. And the pure water flux reached 274.80 kg·m-2·h-1 at 0.1MPa before hydrophobic modification, whereas the modified membrane completely blocked liquid water permeation at pressures less than 0.1MPa. Air gap membrane distillation experiments were conducted for NaCl (2wt%) solution, and the maximum flux reached 4.20 kg·m-2·h-1, while the retention rate remained above 99.8%. Given the scarcity of freshwater resources in coastal areas, the article proposed a system for seawater desalination using air conditioning waste heat, and conducted preliminary research on its freshwater production performance using Aspen Plus. Finally, the proposed system achieved a freshwater production capacity of 0.61 kg·m-2·h-1.

Development of PCM Color Coated Steel Sheets with Excellent Antiviral and Antimicrobial Properties

  • Du-Hwan Jo;Seongil Kim;Jinkyun Roh;Doojin Paik;Myungsoo Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.139-144
    • /
    • 2024
  • Recently, due to the rapid spread and continuation of COVID-19, customer demand for health and hygiene has increased, requiring the development of new products that express antiviral and antibacterial properties. In particular, viruses are much smaller in size than bacteria and have a fast propagation speed, making it difficult to kill. POSCO has developed eco-friendly PCM color coated steel sheets with excellent antiviral properties by introducing inorganic composite materials to the color coating layer on the surface of Zn-Al-Mg alloy plated steels. The virus is not only destroyed by adsorption of metal ions released from the surface of the coating film, but is also further promoted by the generation of reactive oxygen species by the reaction of metal ions and moisture. As a result of evaluating the developed products under the International Standard Evaluation Act, the microbicidal activity was 99.9% for viruses, and 99.99% for bacteria and 0% fungi. In particular, excellent results were also shown in the durability evaluation for life cycle of the product. The developed product was applied as a wall of school classrooms and toilets and ducts for building air conditioning, resulting in excellent results. Developed products are being applied for construction and home appliances to practice POSCO's corporate citizenship.

Improvement of Mechanical Properties of Epoxy Composites Using NH2-HNT Manufactured by Dry Coating Device as Filler (건식코팅장치를 이용하여 제조한 NH2-HNT를 충진재로 응용한 에폭시 복합체의 기계적 물성 향상)

  • Moon il Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.371-375
    • /
    • 2024
  • Epoxy resins are widely used in various fields due to their high adhesion, mechanical strength, and solvent resistance. However, as the volume decreases during the hardening process and the cooling process after hardening, stress is generated and when an external force is applied, the brittle material exhibits destruction behavior. To complement this, research has been conducted using inorganic nanofillers such as halloysite nanotube(HNT). HNT has a nanotube structure with the chemical formula of Al2Si2O5(OH)4·nH2O and is a natural sediment of aluminosilicate. It has been used as additive to improve the mechanical properties of epoxy composites with exchange of amine group as a terminal functional group. In order to simplify complicated procedures of common wet method, a dry coating machine was designed and used for amine group exchange in previous research. In this study, they were applied as filler in epoxy composites, and mechanical properties such as tensile strength and flexural strength of composites were examined.

A review on dynamic characteristics of nonlocal porous FG nanobeams under moving loads

  • Abdulaziz Saud Khider;Ali Aalsaud;Nadhim M. Faleh;Abeer K. Abd;Mamoon A.A. Al-Jaafari;Raad M. Fenjan
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • This research presents dynamical reaction investigation of pore-dependent and nano-thickness beams having functional gradation (FG) constituents exposed to a movable particle. The nano-thickness beam formulation has been appointed with the benefits of refined high orders beam paradigm and nonlocal strain gradient theory (NSGT) comprising two scale moduli entitled nonlocality and strains gradient modulus. The graded pore-dependent constituents have been designed through pore factor based power-law relations comprising pore volumes pursuant to even or uneven pore scattering. Therewith, variable scale modulus has been thought-out until process a more accurate designing of scale effects on graded nano-thickness beams. The motion equations have been appointed to be solved via Ritz method with the benefits of Chebyshev polynomials in cosine form. Also, Laplace transform techniques help Ritz-Chebyshev method to obtain the dynamical response in time domain. All factors such as particle speed, pores and variable scale modulus affect the dynamical response.

Effect of physicochemical properties and feed mix ratios on the carbothermic reductions of iron ore with coke

  • S.R.R. Munusamy;S. Manogaran;F. Abdullah;N.A.M. Ya'akob;K. Narayanan
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.161-171
    • /
    • 2024
  • This study aimed to investigate the effect of physicochemical properties and mix ratios of iron ore (oxide feed): coke (reductant) on the carbothermic reductions of iron ore. Coke size was fixed at ≤63 ㎛ while iron ore size varied between 150-63 ㎛ and ≤63 ㎛ respectively. Mix ratios were changed from 100:0 (reference) to 80:20 and 60:40 while the temperature, heating rate and soaking duration in muffle furnace were fixed at 1100 ℃, 10 ℃/min and 1 hour. Particle size analyzer, XRF, CHNS and XRD analyses were used for determination of raw feed characteristics. The occurrence of phase transformations from various forms of iron oxides to iron during the carbothermal reductions were identified through XRD profiles and supported with weight loss (%). XRF analysis proved that iron ore is of high grade with 93.4% of Fe2O3 content. Other oxides present in minor amounts are 2% Al2O3 and 1.8% SiO2 with negligible amounts of other compounds such as MnO, K2O and CuO. Composite pellet with finer size iron particles (≤63 ㎛) and higher carbon content of 60:40 exhibited 45.13% weight lost compared to 32.30% and 3.88% respectively for 80:20 and 100:0 ratios. It is evident that reduction reactions can only occur with the presence of coke, the carbon supply. The small weight loss of 3.88% at 100:0 ratio occurs due to the removal of moisture and volatiles and oxidations of iron ore. Higher carbon supply at 60:40 leads into better heat and mass transfer and diffusivity during carbothermic reductions. Overall, finer particle size and higher carbon supply improves reactivity and gas-solid interactions resulting in increased reductions and phase transformations.

The behavior of concrete filled steel tubular columns infilled with high-strength geopolymer recycled aggregate concrete

  • Rajai Z. Al-Rousan;Haneen M. Sawalha
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.661-678
    • /
    • 2024
  • The utilization of geopolymer recycled aggregate concrete (GRAC) as the infilled core of the concrete-filled steel tubular (CFST) columns provides superior economic and environmental benefits. However, limited research exists within the field of geopolymer recycled aggregate concrete considered a green and sustainable material, in addition to the limitation of the design guidelines to predict the behavior of such an innovative new material combination. Moreover, the behavior of high-strength concrete is different from the normal-strength one, especially when there is another material of high-strength properties, such as the steel tube. This paper aims to investigate the behavior of the axially loaded square high-strength GRACFST columns through the nonlinear finite element analysis (NLFEA). A total of thirty-two specimens were simulated using ABAQUS/Standard software with three main variables: recycled aggregate replacement ratio (0, 30, and 50) %, width-to-thickness ratios (52.0, 32.0, 23.4, and 18.7), and length-to-width ratio (3, 5, 9, and 12). During the analysis, the response in terms of the axial load versus the longitudinal strain was recorded and plotted. In addition, various mechanical properties were calculated and analyzed. In view of the results, it has been demonstrated that the mechanical properties of high-strength GRACFST columns such as ultimate load-bearing capacity, compressive stiffness, energy absorption capacity, and ductility increase with the increase of the steel tube thickness owing to the improvement of the confinement effect of the steel tube. In contrast, the incorporation of the recycled aggregate adversely affected the mentioned properties except the ductility, while the increase of the recycled aggregate replacement ratio improved the column's ductility. Moreover, it has been found that the increase in the length-to-width ratio significantly reduced both the failure strain and the energy absorption capacity. Finally, the obtained NLFEA results of the ultimate load-bearing capacity were compared with the corresponding predicted capacities by numerous codes. It has been concluded that AISC, ACI, and EC give conservative predictions for the ultimate load-bearing capacity since the confinement effect was not considered by these codes.