• 제목/요약/키워드: Al2024 composite

검색결과 26건 처리시간 0.018초

고온 프레스법에 의한 TiNi/Al2024 복합재료의 제조 및 기계적 특성평가 (Fabrication and Mechanical Properties of TiNi/Al2024 Composites by Hot-Press Method)

  • 손용규;배동수;박영철;이규창
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.45-51
    • /
    • 2009
  • Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy fiber and Al2024 sheets were used as reinforcing material and matrix, respectively. In this study, TiNi/Al2024 shape memory alloy composite was made by using hot press method. In order to investigate bonding condition between TiNi reinforcement and Al matrix, the micro-structure of interface was observed by using optical microscope and diffusion layer of interface was measured by using Electron Probe Micro Analyser. And the mechanical properties of composite with three parameters(volume fraction of fiber, cold rolling amount and test temperature) were obtained by tensile test. The most optimum bonding condition for fabrication the TiNi/Al2024 composite material was obtained as holding for 30min. under the pressure of 60MPa at 793K. The strength of composite material increased considerably with the volume fraction of fiber up to 7.0%. And the tensile strength of this composite increased with the reduction ratio and it also depends on the volume fraction of fiber.

자전연소법으로 제조한 Al2O3.SiC 입자로 보강된2024/(Al2O3.SiC)p 복합재료의 기계적특성 (Mechanical Properties of 2024/(Al2O3.SiC)p Composite Reinforced with Al2O3.SiC Particle Prepared by SHS Process)

  • 맹덕영
    • 한국분말재료학회지
    • /
    • 제7권1호
    • /
    • pp.35-41
    • /
    • 2000
  • Al2O3$.$SiC particle was prepared was prepared by the self-propagting high temperature sYthesis(SHS) process from a mixture of SiO2, Al and C powders, The fabricated Al2O3$.$SiC particle was applied to 2024Al/(Al2O3$.$SiC)pcomposite as a reinforcement. Aluminum matix composites were fabricares by the powder extrusion method using the synthesized Al2O3$.$SiC particle and commercial 2024Al powder. Theoptimum preparation conditions for Al2O3$.$SiC partticle by SHS process were described. The influence of the Al2O3$.$SiC voiume fraction on the mechanical was composite was also discussed. Despite adiabatic temperature was about 2367K, SHs reaction was completed not by itself, but by using pre-heating. Mean particle size of final particle synthesized was 0.73 ${\mu}$m and most of the particle was smaller than 2${\mu}$m. Elastic modulus and tensile strength of the composite increased with increase the volume fraction of reinforcement but, tensile strength depreciated at 30 vol% of reinforcement.

  • PDF

Experimental Investigation of Mechanical and Tribological Characteristics of Al 2024 Matrix Composite Reinforced by Yttrium Oxide Particles

  • Hamada, Mohanad Lateef;Alwan, Ghazwan Saud;Annaz, Abdulkader Ahmed;Irhayyim, Saif Sabah;Hammood, Hashim Shukur
    • 한국재료학회지
    • /
    • 제31권6호
    • /
    • pp.339-344
    • /
    • 2021
  • Composite materials offer distinct and unique properties that are not naturally inherited in the individual materials that make them. One of the most attractive composites to manufacture is the aluminum alloy matrix composite, because it usually combines easiness of availability, light weight, strength, and other favorable properties. In the current work, Powder Metallurgy Method (PMM) is used to prepare Al2024 matrix composites reinforced with different mixing ratios of yttrium oxide (Y2O3) particles. The tests performed on the composites include physical, mechanical, and tribological, as well as microstructure analysis via optical microscope. The results show that the experimental density slightly decreases while the porosity increases when the reinforcement ratio increases within the selected range of 0 ~ 20 wt%. Besides this, the yield strength, tensile strength, and Vickers hardness increase up to a 10 wt% Y2O3 ratio, after which they decline. Moreover, the wear results show that the composite follows the same paradigm for strength and hardness. It is concluded that this composite is ideal for application when higher strength is required from aluminum composites, as well as lighter weight up to certain values of Y2O3 ratio.

TiNi/Al6061-T6과 TiNi/Al2024-T4 형상기억복합재료에 대한 피로강도기준의 비교 (Comparison of Fatigue Strength Criteria for TiNi/Al6061-T6 and TiNi/Al2024-T4 Shape Memory Alloy Composite)

  • 조영직;박영철
    • 대한기계학회논문집A
    • /
    • 제33권2호
    • /
    • pp.99-107
    • /
    • 2009
  • This study produced a design curve and fatigue limit for a variation in volume ratio and reduction ratio of TiNi/Al composites. In many cases, stress-life curve does not indicate fatigue limit, so it was presented by probabilistic-stress-life curve. Goodman diagram was used to analyze the fatigue strength of materials with a finite life determined by repeated load and the fatigue strength of endurance limit with an infinite life. The fatigue experiment was conducted using the scenk-type plane bending specimen in same shape. The result of the fatigue test, which had been conducted under consistent stress amplitude, was examined. (i) The optimal condition for TiNi/Al in accordance with hot pressing (ii) Impacts of fatigue limit caused by a variation in reduction ratio and volume ratio of TiNi/Al composites (iii) Probability distribution for fatigue limit of TiNi/Al2024 and TiNi/Al6061.

Rheo-compocasting법으로 제조된 알루미나 입자강화 Al합금 복합재료의 계면반응 (Interfacial Characteristics of $Al-2024/Al_2O_{3p}$ Composite Fabricated by Rheo-compocasting)

  • 현석종;예병준
    • 한국주조공학회지
    • /
    • 제13권3호
    • /
    • pp.285-294
    • /
    • 1993
  • Aluminum alloy 2024 matrix composites reinforced with $Al_2O_3$ particles, were prepared by rheo-compocasting, a process which consists of the incoporation distribution of reinforcement by stirring within a semi-solid alloy. The microstructures and characteristics of the interfaces have been studied using optical microscope and scanning electon microscope in 2024 aluminum alloy composites reinforced with $Al_2O_3$ particles. The main results are as follows: (1) $Al_2O_3$ particles were well distributed in composites by using rheo-compocasting. (2) As the addition of $Al_2O_3$ particle increases, the average dendrite numbers and the hardness were increased. (3) Interaction between $Al_2O_3$ particles and alloy 2024 resulted in the formation of Mg and Cu element rich region around the $Al_2O_3$ particles.

  • PDF

CFRP로 보강한 하이브리드 복합재료의 비파괴검사법을 이용한 피로균열 지연의 연구 (A Study on Fatigue Crack Retardation Using NDT Test in a Hybrid Composite Material Reinforced with a CFRP)

  • 윤한기;박원조;허정원
    • Composites Research
    • /
    • 제12권3호
    • /
    • pp.1-7
    • /
    • 1999
  • Al2024-T3 판재에 카본/에폭시(carbon/epoxy) 라미네이트를 섬유배열 방향 $0^{\circ}$/$90^{\circ}$$\pm$$45^{\circ}$로 2 Plies 보강하여 CPAL(Carbon Patched ALuminum alloy)재를 제작하고, 응력비 R=0.2, 0.5에서 피로균열전파 실험을 실시하였다. X-Ray와 초음파 C-Scan 장비를 이용하여 A/2024-T3 판재의 균열과 CFRP 라미네이트 박리 거동을 조사하여 피로균열 지연 거동과 지연기구(mechanism)를 연구하였다. A/2024-T3 시험편에 비해서 CPAL 시험편은 피로균열전파속도가 현저하게 지연되었으며, 지연 정도는 $0^{\circ}$/$90^{\circ}$ CPAL이 $\pm$$45^{\circ}$ CPAL 시험편보다 크고, 응력비 R=0.2에서 응력비 R=0.5보다 크게 나타났다. CPAL 시험편의 피로균열 지연 효과는 균열후방의 박리 및 비박리 CFRP 라미네이트가 A/2024-T3 판재의 균열열림(COD)을 감소시키는 균열브리징미케니즘(crack bridging medhanism) 때문에 발생함을 확인하였다.

  • PDF

In-situ Vacuum Hot Press 공정을 이용한 SiCp/Al 복합재료의 제조 (Fabrication of SiCp/Al Alloy Composites by In-situ Vacuum Hot Press Process)

  • 최세원;홍성길;김영만;장시영;강창석
    • 한국재료학회지
    • /
    • 제11권7호
    • /
    • pp.590-598
    • /
    • 2001
  • 본 연구에서는 특별하게 고안된 In-situ VHP 제조 공정을 이용하여 상온에서 $500^{\circ}C$까지의 진공 열간 압축과 canning 작업 없이 $520^{\circ}C$에서 연속 압출옳 하여 Sicp/pure Al과 SiCp/2024Al MMCs를 제조하였다. 복합재료의 인장강도와 미세구조에 영향을 주는 SiC 입자크기, 체적률, 압출비에 대해서 조사하였다. 압출비 10:1의 경우에는 SiCp/pure Al과 SiCp/2024Al 복합재료 둘 다 건전한 외형과 SiCp의 일정한 분산을 가지면서 SiCp의 균열이 없는 좋은 미세 구조를 가지고 있었다. 그러나 압출비 16:1의 경우에는 체적률이 증가할수록 파괴된 SiC 입자의 수가 증가하였으며 2024Al 기지내의 복합재료와 순수한 Al 기지재 복합재료를 서로 비교하였다. 동일한 체적률과 압출비의 경우에는 SiCp의 크기가 작은 복합재료가 SiCp가 큰 복합재료보다 인장강도가 더 높았다.

  • PDF

Al 2024-T3 판에 AFRP를 접착한 복합재료의 인장강도에 대한 통계적 특성 (Statistical Properties for Tensile strength of Composite Materials Patched with AFRP on 2024-T3 Aluminum Alloy plate)

  • 윤한기;안원기;허선철
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1810-1816
    • /
    • 2000
  • A hybrid composite APAL(Aramid Patched Aluminum alloy) , consisting of Al 2024-T3 aluminum alloy plate sandwiched between two aramid/epoxy laminates, was developed. The characteristics of tensile s trength were investigated and statistical properties of tensile strength were studied in terms of Weibull distribution probability with number of AFRP laminates. The tensile strength of APAL was inproportional to number of AFRP laminates and followed the two-parametic Weibull distribution.

수렴성 빔 전자회절법을 이용한 $SiC_p/Al$ 복합재에서의 계면 생성물의 상분석 (Phase Identification of the Interfacial Reaction Product of $SiC_p/Al$ Composite Using Convergent Beam Electron Diffraction Technique)

  • 이정일;이재철;석현광;이호인
    • Applied Microscopy
    • /
    • 제26권1호
    • /
    • pp.95-104
    • /
    • 1996
  • A comprehensive methodology to characterize the interfacial reaction products of $SiC_p/2024$ Al composites is introduced on the basis of the experimental results obtained using XRD, SEM and TEM. XRD performed on the electrochemically extracted $SiC_p$ and bulk $SiC_p/2024$ Al composite have shown that the interfacial reaction products consist of $Al_{4}C_3$ having hexagonal crystallographic structure, pure eutectic Si having diamond cubic crystallographic structure, and $CuAl_2$, having tetragonal crystalloraphic structure, respectively. According to the images observed by SEM, $Al_{4}C_3$, which has been reported to have needle shape, has a hexagonal platelet-shape and eutectic Si is found to have a dendritic shape. In addition eutectic $CuAl_2$, was observed to form near interface and/or along the grain boundaries. In order to confirm the results obtained by XRD, the primitive cell volume and reciprocal lattice height of such interfacial reaction products were calculated using the data obtained from convergent beam electron diffraction (CBED) patterns, and then compared with theoretical values.

  • PDF

Transient dynamic analysis of sandwich beam subjected to thermal and pulse load

  • Layla M. Nassir;Mouayed H.Z. Al-Toki;Nadhim M. Faleh;Hussein Alwan Khudhair;Mamoon A.A. Al-Jaafari;Raad M. Fenjan
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.1-8
    • /
    • 2024
  • Transient dynamic behavior of a sandwich beam under thermal and impulsive loads has been researched in the context of higher-order beam theory. The impulse load of blast type has been enforced on the top exponent of the sandwich beam while it is in a thermal environment. The core of the sandwich beam is cellular with auxetic rectangular pattern, whereas the layers have been built with the incorporation of graphene oxide powder (GOP) and are micromechanically introduced through Halpin-Tsai formulization. Governing equations for the sandwich beam have been solved through inverse Laplace transform style for obtaining the dynamical deflections. The connection of beam deflections on temperature variability, GOP quantity, pulse load situation and core relative density has been surveyed in detail.