• 제목/요약/키워드: Al1050

검색결과 138건 처리시간 0.022초

알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 ( 1부 : 실험 ) (Development of Finite Element Program for Analyzing Springback Phenomena of Non-isothermal Forming Processes for Aluminum Alloy Sheets(Part 1 : Experiment))

  • 금영탁;유동열;한병엽
    • 소성∙가공
    • /
    • 제12권3호
    • /
    • pp.202-207
    • /
    • 2003
  • In order to examine the springback amount and material properties of aluminum alloy sheets (AL1050 and AL5052) in the warm forming which forms the sheet above the room temperature, the stretch bending and draw bending tests and tensile test in various high temperatures are carried out. The warm forming temperature 15$0^{\circ}C$ is a transition in terms of the material properties: over the forming temperature 15$0^{\circ}C$, them $\sigma$$_{YS}$ , $\sigma$$_{TS}$ , E, K, n, etc. are bigger but $\varepsilon$ and plastic strain ratio are smaller. Below the forming temperature 15$0^{\circ}C$, there are no big differences in material properties as the forming temperature changes. AL5052 sheet has more springback effect than AL1050 sheet. While the springbacks of AL5052 and AL1050 sheets show a big reduction over the warm forming temperature 15$0^{\circ}C$ in the stretch bending test, the springback rapidly reduces in the warm forming temperature 15$0^{\circ}C$-20$0^{\circ}C$ for AL5052 sheet and 20$0^{\circ}C$-25$0^{\circ}C$ for AL1050 sheet in the draw bending test.

알루미늄 합금박판 온간 성형의 스프링백 (Springback in Warm Forming of Aluminum Alloy Sheets)

  • 한병엽;정기욱;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.152-155
    • /
    • 2003
  • In order to examine the springback of aluminum alloy sheets, AL1050 and AL5052, in the warm forming which forms the sheet above room temperature, the stretch bending and draw bending tests in various working temperatures were carried out. While the springbacks of AL5052 and AL1050 are tremendously reduced over 150$^{\circ}C$ in the stretch bending test, the springbacks in the draw bending test are rapidly reduced in 150$^{\circ}C$-200$^{\circ}C$ for AL5052 and 200$^{\circ}C$-250$^{\circ}C$ for AL1050. Using the FEM program, the forming and springback processes are analyzed. Though springback amounts of analysis result are slightly bigger than those of experiment, they showed the same trend in the decreasing springback as the forming temperature increases.

  • PDF

순도에 따른 Al 판재의 재결정 거동 (Recrystallization Behavior of Aluminum Plates Depending on Their Purities)

  • 이현우;하태권;박형기;민석홍
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.688-695
    • /
    • 2016
  • Recrystallization behavior has been investigated for commercial purity AA1050 (99.5wt%Al) and high purity 3N Al (99.9wt% Al). Samples were cold rolled with 90% of thickness reduction and were annealed isothermally at 290, 315, and 350o C for various times until complete recrystallization was achieved. Hardness measurement and Electron Backscatter Diffraction(EBSD) analyses, combined with Grain Orientation Spread(GOS), were employed to investigate the recrystallization behavior. EBSD analysis combined with GOS were distinctly revealed to be a more useful method to determine the recrystallization fraction and to characterize the recrystallization kinetics. As the annealing temperature increased, recrystallization in AA1050 accelerated more than that process did in Al 3N. Both AA1050 and Al 3N showed the same temperature dependence of the n value of the Johnson-Mehl-Avrami-Kolmogorov equation(JMAK equation), i.e., n values increased as annealing temperature increased. Activation energy of recrystallization in AA1050 is about 176 kJ/mol, which is comparable with the activation energy of grain boundary migration in cold-rolled AA1050. This value is somewhat higher than the activation energy of recrystallization in Al 3N.

Al1050 합금에 Plasma Electrolytic Oxidation으로 형성된 산화피막 분석 (Analysis of Oxide Coatings Formed on Al1050 Alloy by Plasma Electrolytic Oxidation)

  • 김배연;이득용;김용남;전민석;유완식;김광엽
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.295-300
    • /
    • 2009
  • The crystal structure of surface coatings on Al1050 alloy by PEO (Plasma Electrolytic Oxidation), were investigated. The electrolyte for PEO was Na-Si-P system solution. The main crystalline phase were $\gamma$-alumina and $\alpha$-alumina. Crystallinity was increased with applied voltage and applied time. The dominant crystalline phase were affected not only chemical composition of Al alloy substrate and electrolyte, but also the +/- ratio of applied voltage.

Al-1050 위에 플라즈마 전해 산화법으로 형성된 Al2O3 피막 특성에 미치는 듀티사이클의 영향 (Influence of the Duty Cycle on the Characteristics of Al2O3 Coatings Formed on the Al-1050 by Plasma Electrolytic Oxidation)

  • 남경수;문정인;피마봉 껑씨;송정환;임대영
    • 한국세라믹학회지
    • /
    • 제50권2호
    • /
    • pp.108-115
    • /
    • 2013
  • Oxide coatings were prepared on Al-1050 substrates by an environment-friendly plasma electrolytic oxidation (PEO) process using an electrolytic solution of $Na_2SiO_3$ (8 g/L) and NaOH (3 g/L). The effects of three different duty cycles (20%, 40%, and 60%) and frequencies (50 Hz, 200 Hz, and 800 Hz) on the structure and micro-hardness of the oxide coatings were investigated. XRD analysis revealed that the oxides were mainly composed of ${\alpha}-Al_2O_3$, ${\gamma}-Al_2O_3$, and mullite. The proportion of each crystalline phase depended on various electrical parameters, such as duty cycle and frequency. SEM images indicated that the oxide coatings formed at a 60% duty cycle exhibited relatively coarser surfaces with larger pore sizes and sintering particles. However, the oxides prepared at a 20% duty cycle showed relatively smooth surfaces. The PEO treatment also resulted in a strong adhesion between the oxide coating and the substrate. The oxide coatings were found to improve the micro-hardness with the increase of duty cycle. The structural and physical properties of the oxide coatings were affected by the duty cycles.

극저온 압연한 Al 1050의 결정립 미세화 및 재결정 거동 (Formation of Ultrafine Grain and Recrystallization in 1050 Al Alloy Rolled at Cryogenic Temperature)

  • 이영범;송형락;남원종
    • 소성∙가공
    • /
    • 제13권5호
    • /
    • pp.455-460
    • /
    • 2004
  • The deformation and annealing behaviors of a 1050 Al alloy deformed at cryogenic temperature were investigated, focusing on the evolution of microstructures and mechanical properties. Especially, the effects of annealing temperature, $150~300^{\circ}C$, on microstructures and mechanical properties of the sheets received reduction of 88% at cryogenic temperature were investigated. The significant change in mechanical properties with the annealing temperatures of $200~300^{\circ}C$ would be attributed to the variations in the volume fraction of recrystallized grains and coarse equiaxed grains.

Ti-43%Al-2%W-0.1%Si 합금의 고온산화 (High Temperature Oxidation of Ti-43%Al-2%W-0.1%Si Alloys)

  • 심웅식;이동복
    • 한국표면공학회지
    • /
    • 제36권2호
    • /
    • pp.128-134
    • /
    • 2003
  • Alloys of Ti-43%Al-2%W-0.1%Si were oxidized isothermally and cyclically between $900^{\circ}C$ and$ 1050^{\circ}C$, and their oxidation characteristics were studied. During isothermal tests, the alloys oxidized slowly up to 100$0^{\circ}C$, but fast at $1050^{\circ}C$. Though the scale adherence was not good above $900^{\circ}C$, the alloys displayed better oxidation behavior than unalloyed TiAl alloys. The oxide scales consisted primarily of an outer $TiO_2$ layer, intermediate $Al_2$$O_3$-rich layer, and an inner mixed layer of (TiO$_2$ $+Al_2$$O_3$). Tungsten was present mainly at the lower part of the oxide scale, while Si over the whole oxide scale.

플라즈마 전해 산화법에 의한 Al-1050 표면상의 산화막 제조에 미치는 전기적 변수의 영향 (Influence of the Electrical Parameters on the Fabrication of Oxide Layers on the Surface of Al-1050 by a Plasma Electrolytic Process)

  • 남경수;송정환;임대영
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.498-504
    • /
    • 2012
  • Oxide layers were prepared by an environmentally friendly plasma electrolytic oxidation (PEO) process on an Al-1050 substrate. The electrolyte for PEO was an alkali-based solution with $Na_2SiO_3$ (8 g/L) and NaOH (3 g/L). The influence of the electrical parameters on the phase composition, microstructure and properties of the oxide layers formed by PEO were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The voltage-time responses were recorded during various PEO processes. The oxides are composed of two layers and are mainly made of ${\alpha}$-alumina, ${\gamma}$-alumina and mullite phases. The proportion of each phase depends on various electrical parameters. It was found that the surface of the oxides produced at a higher current density and Ia/Ic ratio shows a more homogeneous morphology than those produced with the electrical parameters of a lower current density and lower Ia/Ic ratio. Also, the oxide layers formed at a higher current density and higher Ia/Ic ratio show high micro-hardness levels.