• Title/Summary/Keyword: Al-l%Si

Search Result 212, Processing Time 0.027 seconds

The formation of $\beta$-quartz solid silution in lithiu alumino silicate glasses (Lithium Alumino Silicate계 유리에서 알카리 토류 첨가에 따른 $\beta$-quartz고용체의 형성에 관한 연구)

  • Kim, Byeong-Il;Gang, Won-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.6
    • /
    • pp.611-619
    • /
    • 1994
  • The formation of , $\beta$-quartz solid solution in the $LiO_2-Al_2O_3-SiO_2$glasses containing $TiO_{2}$ and $ZrO_{2}$ as nucleating agents was investigated for various temperatures and times. Linear thermal expansion coefficients of base glasses and crystallized glasses were $45\sim 55 \times 10^{-7} \textrm{cm}/^{\circ}C$ and $ -8\sim +8 \times 10^{-7}\textrm{cm}/^{\circ}C$ ($25^{\circ}C \sim 525^{\circ}C$), respectively. The crystal phase formed by heat-treatment below $900^{\circ}C$was , $\beta$--quartz solid solution, and the crystal sizes were less than 0.21m. On the other hand, the crystal size of the base glasses containing 3.5 wt% MgO is relatively uniform and is independent with temperature. The specimen containing 3.5 wt% ZnO shows a minimum crystal size(O.l8$\mu \textrm{m}$), and it strongly depends on temperature of heat-treatment.

  • PDF

Source Identification of Ambient PM-10 Using the PMF Model (PMF 모델을 이용한 대기 중 PM-10 오염원의 확인)

  • 황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.701-717
    • /
    • 2003
  • The objective of this study was to extensively estimate the air quality trends of the study area by surveying con-centration trends in months or seasons, after analyzing the mass concentration of PM-10 samples and the inorganic lements, ion, and total carbon in PM-10. Also, the study introduced to apply the PMF (Positive Matrix Factoriza-tion) model that is useful when absence of the source profile. Thus the model was thought to be suitable in Korea that often has few information about pollution sources. After obtaining results from the PMF modeling, the existing sources at the study area were qualitatively identified The PM-10 particles collected on quartz fiber filters by a PM-10 high-vol air sampler for 3 years (Mar. 1999∼Dec.2001) in Kyung Hee University. The 25 chemical species (Al, Mn, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, Ce, Pb, Si, N $a^{#}$, N $H_4$$^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$, C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$, TC) were analyzed by ICP-AES, IC, and EA after executing proper pre - treatments of each sample filter. The PMF model was intensively applied to estimate the quantitative contribution of air pollution sources based on the chemical information (128 samples and 25 chemical species). Through a case study of the PMF modeling for the PM-10 aerosols. the total of 11 factors were determined. The multiple linear regression analysis between the observed PM-10 mass concentration and the estimated G matrix had been performed following the FPEAK test. Finally the regression analysis provided source profiles (scaled F matrix). So, 11 sources were qualitatively identified, such as secondary aerosol related source, soil related source, waste incineration source, field burning source, fossil fuel combustion source, industry related source, motor vehicle source, oil/coal combustion source, non-ferrous metal source, and aged sea- salt source, respectively.ively.y.

Thermal Elasto-Plastic Deformation Analysis of Metal Matrix Composites Considering Residual Stress and Interface Bonding Strength (잔류응력과 계면접합강도를 고려한 금속복합재료의 열탄소성 변형 해석)

  • Kang, Chung-Gil;Seo, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.227-237
    • /
    • 1999
  • As the interface bonding phenomenon between the matrix and the reinforcements has a large effect on the mechanical properties of MMCs, a sugestion of the strength analysis technique considering the residual stress and the interface bonding phenomenon is very important for the design of pans and the estimation of fatigue behavior. In this paper the three dimensional finite element anaysis is performed during the elasto-plastic deformation of the particulate reinforced metal matrix composites. It was analyzed with the volume fractions in view of microscale. Bonding strength. interface separation and matrix void growth between the matrix and the reinforcements will be predicted on deformation under tensile loading. An interface seperation is estimated by the fracture criterion which is a critical value of generalized plastic work per unit volume. The shape of the reinforcement is assumed to be a perfect sphere. And the type of the reinforcement distribution is assumed as FCC array. The thermal residual stress in MMCs is induced by the heat treatment. It is included at the simulation as an initial residual stress. The element birth and death method of the ANSYS program is used for the estimation of the interface bonding strength, void generation and propagation. It is assumed that the fracture in the matrix region begin to occur under the external loading when the plastic work per unit volume is equal to the critical value. The fracture strain will be defined. The experimental data of the extruded $SiC_p$>/606l Al composites are compared with the theoretical results.

  • PDF

Availability Review of Tailings from the Sangdong Tungsten Mine as a Material for Construction (건설용 재료로서 상동광산광미의 활용성 검토)

  • Kim, Yong-Jic;Kim, Young-Jin;Choi, Yun-Wang;Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.204-210
    • /
    • 2013
  • This study has focused on the possibility for recycling tailings from the Sangdong tungsten mine (TA) as admixture for concrete. TA has been accumulating for several decades in Sangdong, a region in Korea, and there is a growing demand for alternative uses for this hazardous substance. In particular, the use must be in accordance with the hazardous materials stipulations under the Korean waste control act. This study showed that TA presented pH of 8.0-9.3, 18.7-22.0% of water content, 2.7% of maximum ignition loss. The chemical composition of TA showed minute differences from each depth of sampling that represented approximately 50% of $SiO_2$ and 13% of both $Al_2O_3$ and $Fe_2O_3$. The chemical composition of Cd, Cu, Zn and Pb from mortar incorporating TA showed lower levels of hazardous materials which met the specifications of the waste control act in Korea. The TA mortar also appeared very effective for stabilizing/solidifying heavy metals particularly when used in conjunction with SG.

The electronic structure of the ion-beam-mixed Pt-Cu alloys by XPS and XANES

  • Lim, K.Y.;Lee, Y.S.;Chung, Y.D.;Lee, K.M.;Jeon, Y.;Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.133-133
    • /
    • 1998
  • In the thin film alloy formation of the transition metals ion-beam-mixing technique forms a metastable structure which cannot be found in the arc-melted metal alloys. Sppecifically it is well known that the studies about the electronic structure of ion-beam-mixed alloys pprovide the useful information in understanding the metastable structures in the metal alloy. We studied the electronic change in the ion-beam-mixed ppt-Ct alloys by XppS and XANES. These analysis tools pprovide us information about the charge transfer in the valence band of intermetallic bonding. The multi-layered films were depposited on the SiO2 substrate by the sequential electron beam evapporation at a ppressure of less than 5$\times$10-7 Torr. These compprise of 4 ppairs of ppt and Cu layers where thicknesses of each layer were varied in order to change the alloy compposition. Ion-beam-mixing pprocess was carried out with 80 keV Ae+ ions with a dose of $1.5\times$ 1016 Ar+/cm2 at room tempperature. The core and valence level energy shift in these system were investigated by x-ray pphotoelectron sppectroscoppy(XppS) pphotoelectrons were excited by monochromatized Al K a(1486.6 eV) The ppass energy of the hemisppherical analyzer was 23.5 eV. Core-level binding energies were calibrated with the Fermi level edge. ppt L3-edge and Cu K-edge XANES sppectra were measured with the flourescence mode detector at the 3C1 beam line of the ppLS (ppohang light source). By using the change of White line(WL) area of the each metal sites and the core level shift we can obtain the information about the electrons pparticippating in the intermetallic bonding of the ion-beam-mixed alloys.

  • PDF

PARTITIONING RATIO OF DEPLETED URANIUM DURING A MELT DECONTAMINATION BY ARC MELTING

  • Min, Byeong-Yeon;Choi, Wang-Kyu;Oh, Won-Zin;Jung, Chong-Hun
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.497-504
    • /
    • 2008
  • In a study of the optimum operational condition for a melting decontamination, the effects of the basicity, slag type and slag composition on the distribution of depleted uranium were investigated for radioactively contaminated metallic wastes of iron-based metals such as stainless steel (SUS 304L) in a direct current graphite arc furnace. Most of the depleted uranium was easily moved into the slag from the radioactive metal waste. The partitioning ratio of the depleted uranium was influenced by the amount of added slag former and the slag basicity. The composition of the slag former used to capture contaminants such as depleted uranium during the melt decontamination process generally consists of silica ($SiO_2$), calcium oxide (CaO) and aluminum oxide ($Al_2O_3$). Furthermore, calcium fluoride ($CaF_2$), magnesium oxide (MgO), and ferric oxide ($Fe_2O_3$) were added to increase the slag fluidity and oxidative potential. The partitioning ratio of the depleted uranium was increased as the amount of slag former was increased. Up to 97% of the depleted uranium was captured between the ingot phase and the slag phase. The partitioning ratio of the uranium was considerably dependent on the basicity and composition of the slag. The optimum condition for the removal of the depleted uranium was a basicity level of about 1.5. The partitioning ratio of uranium was high, exceeding $5.5{\times}10^3$. The slag formers containing calcium fluoride ($CaF_2$) and a high amount of silica proved to be more effective for a melt decontamination of stainless steel wastes contaminated with depleted uranium.

Evaluation of Soil Redox Capacity using Chromium Oxidation-reduction Reactions in Volcanic Ash Soils in Jeju Island (크롬산화환원반응을 이용한 제주도 화산회토양 내 토양산화환원능 평가)

  • Chon, Chul-Min;Ahn, Joo-Sung;Kim, Kue-Young;Park, Ki-Hwa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.161-175
    • /
    • 2008
  • The soil developed from volcanic ash in Jeju Island, Korea, were classified as typical Andisols. The soils had acidic pH, high water contents, high organic matters and clay-silty textures. The crystalline minerals of the samples were mainly composed of ferromagnesian minerals such as olivine and pyroxene, and iron oxides such as magnetite and hematite derived from basaltic materials. A large amount of gibbsite was found at the subsurface horizon as a secondary product from the migration of excessive aluminum. In addition, our study has shown that considerable amounts of poorly ordered minerals like allophane and ferrihydrite were present in Jeju soils. The contents of $SiO_2$ were lower than those of other soil orders, but $A1_2O_3$ and $Fe_2O_3$ contents were higher. These results are some of the important chemical properties of Andisols. The contents of heavy metals were in the range of $84{\sim}198$ for Zn, $56{\sim}414$ for Ni, $38{\sim}150$ for Co, $132{\sim}1164\;mg\;kg^{-1}$ for Cr, which are higher than the worldwide values in most of the soils. Some soil samples contained relatively high levels of Cr exceeding 1000 mg/kg. Mean reduction capacity of the Jeju soils was $6.53\;mg\;L^{-1}$ reduced Cr(VI), 5.1 times higher than that of the non-volcanic ash soils from inland of Korea. The soil reduction capacity of the inland soils had a good correlation with total carbon content (R = 0.90). However, in spite of 20 times higher total carbon contents in the Jeju soils, there was a week negative correlation between the reduction capacity and the carbon content (R = -0.469), suggesting that the reduction capacity of Jeju soils is not mainly controlled by the carbon content and affected by other soil properties. Correlations of the reduction capacity with major elements showed that Al and Fe were closely connected with the reduction capacity in Jeju soil (R = 0.793; R = 0.626 respectively). Moreover, the amounts of Ni, Co and Cr had considerable correlations with the reduction capacity (R = 0.538; R = 0.647; R = 0.468 respectively). In particular, in relation to the behavior of redox-sensitive Cr, the oxidation of the trivalent chromium to mobile and toxic hexavalent chromium can be restricted by the high reduction capacity in Jeju soil. The factors controlling the reduction capacity in Jeju soils may have a close relation with the andic soil properties explained by the presence of considerable allophane and ferrihydrite in the soils.

Factors Affecting the Property of $CaCO_3$Precipitated from $CaCl_2-Na_2CO_3-H_2O$ System ($CaCl_2-Na_2CO_3-H_2O$ 반응계에서 침강성탄산칼슘의 성상에 영향을 주는 인자에 관하여)

  • Song, Young-Jun;Park, Charn-Hoon;Cho, Dong-Sung
    • Resources Recycling
    • /
    • v.5 no.4
    • /
    • pp.32-41
    • /
    • 1996
  • The objective of this study was to investigate the facton affecting the property of CaCO, farmed from CaClz-Na,CO,-HiOsystem. The effcct of the concentmtlon of reaclants, impurity, the pH of reaction, the addition of sccd crystal, and injectingvelocity af reaclant solution an thc yield oI CaCO; polymorphs. parlide size and whiteness of CaCO, were investigated. Thcmqor resulls are ;o fallows; I The optimum concentratinn of reildilnts for forming vaterlte and aragonite is the range of 0.1-1.0 mol/l, when the yicld of vittcrite and araga~nles howed 7542% and XU-90%. respedively. 2. Among thc composition of impunticscontained h limestone, Fe' decrease the wh~tcness nf CaCO;. md Mg" increase the yield of aragonite. 3. The pHrange of vaterite and aragonite are formed with high yield is 8-11, and Calcite is famed in pH 6-8 with big particle size of 1over and in pH 11-13 with small particle size of I under. 4. The yicld of calcite and aragonite was increased by addingthc seed cryst.al nf itself.d cryst.al nf itself.

  • PDF

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

Geochemical Enrichment and Migration of Environmental Toxic Elements in Stream Sediments and Soils from the Samkwang Au-Ag Mine Area, Korea (삼광 금-은광산 일대의 하상퇴적물과 토양내 함유된 독성원소의 지구화학적 부화와 이동)

  • Lee, Chan Hee;Lee, Byun Koo;Yoo, Bong-Cheal;Cho, Aeran
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.111-125
    • /
    • 1998
  • Dispersion, migration and enrichment of environmental toxic elements from the Samkwang Au-Ag mine area were investigated based upon major, minor and rare earth element geochemistry. The Samkwang mine area composed mainly of Precambrian granitic gneiss. The mine had been mined for gold and silver, but closed in 1996. According to the X-ray powder diffraction, mineral composition of stream sediments and soils were partly variable mineralogy, which are composed of quartz, orthoclase, plagioclase, amphibole, muscovite, biotite and chlorite, respectively. Major element variations of the host granitic gneiss, stream sediments and soils of mining and non-mining drainage, indicate that those compositions are decrese $Al_2O_3$, $Fe_2O_3$, MgO, $TiO_2$, $P_2O_5$ and LOI with increasing $SiO_2$ respectively. Average compositional ranges (ppm) of minor and/or environmental toxic elements within those samples are revealed as As=<2-4500, Cd=<1-24, Cu=6-117, Sb=1-29, Pb=17-1377 and Zn=32-938, which are extremely high concentrations of sediments from the mining drainage (As=2006, Cd=l1, Cu=71, Pb=587 and Zn=481 ppm, respectively) than concentrations of the other samples and host granitic gneiss. Major elements (average enrichment index=6.53) in all samples are mostly enriched, excepting $SiO_2$, $Na_2O$ and $K_2O$, normalized by composition of host granitic gneiss. Rare earth element (average enrichment index=2.34) are enriched with the sediments from the mining drainage. Minor and/or environmental toxic elements within all samples on the basis of host rock were strongly enriched of all elements (especially As, Br, Cu, Pb and Zn), excepting Ba, Cr, Rb and Sr. Average enrichment index of trace elements in all samples is 15.55 (sediments of mining drainage=37.33). Potentially toxic elements (As, Cd, Cr, Cu, Ni, Pb, and Zn) of the samples revealed that average enrichment index is 46.10 (sediments of mining drainage=80.20, sediments of nonmining drainage=5.35, sediments of confluent drainage=20.22, subsurface soils of mining drainage=7.97 and subsurface soils of non-mining drainage=4.15). Sediments and soils of highly concentrated toxic elements are contained some pyrite, arsenopyrite, sphalerite, galena and goethite.

  • PDF