• Title/Summary/Keyword: Al-alloying

Search Result 311, Processing Time 0.023 seconds

Oxidation Behavior of Al-25Ti-8Mn Intermetallic Compound Fabricated by Mechanical Alloying and Spark Plasma Sintering (기계적 합금화법과 방전 플라즈마 소결법으로 제조된 Al-25Ti-8Mn 금속간 화합물의 산화 거동)

  • Choi J. W.;Kim K. H.;Hwang G. H.;Hong S. J.;Kang S. G.
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.439-443
    • /
    • 2005
  • The oxidation behavior and the thermal stability of nanocrystalline Al-25Ti-8Mn intermetallic compound were investigated. $Al_3Ti$ intermetallic compound, which has a potential for high temperature structural material, was fabricated by mechanical alloying(MA) with $8at.\%$ Mn to enhance the thermal stability and ductility. And Al-25Ti-8Mn intermetallic compound was sintered by spark plasma sintering(SPS) at $700^{\circ}C$. After sintering process, cubic $Ll_2$ structure was maintained without phase transformation and the grain size was about 50nm. To investigate the oxidation behavior of the specimens, thermal gravimetric analysis(TGA) was performed at 700, 800, 900, and $1000^{\circ}C$ for 24 h in $O_2$. As the temperature increased from $700^{\circ}C\;to\;900^{\circ}C$ the weight gain of specimens increased. However at $1000^{\circ}C$, unlike the oxidation behavior of $700^{\circ}C\;to\;900^{\circ}C$, the weight gain of specimen decreased drastically and the transition from linear rate region to parabolic rate region occurred rapidly due to the dense $\alpha-Al_2O_3$.

Effects of Al in TRIP steels on microstructure and phase transformation (TRIP강에서 Al이 미세구조와 상변태에 미치는 영향)

  • Lim, N.S.;Kim, S.I.;Park, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.213-216
    • /
    • 2009
  • In this study, three cold-rolled TRIP steels containing different Al content (0.04wt%, 1.0 wt.% and 2.00wt%) were fabricated to understand the complex effects of Al in TRIP steel. The influences of Al on microstructural evolution of cold-rolled TRIP steels have been analyzed by using advanced analysis techniques, such as transmission electron microscope (TEM) and three dimensional atom probe tomography (3D-APT). TEM results revealed that second phases such as bainte and retained austenite decrease with increase of Al content. In addition, 3D-APT was used to characterize atomic-scale distribution of alloying elements at the constituent phases. Through these analysis techniques, the advanced characteristics of constituent microstructure in TRIP steels were identified depending on Al contents in TRIP steels.

  • PDF

Elevated Temperature Compressive Properties of Al-Ti Alloys Prepared by Mechanical Alloying (기계적 합금화에 의해 제조된 AS-Ti합금의 고온압축성질)

  • 이광민
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.129-132
    • /
    • 1998
  • The elevated temperature compressive tests were carried out in order to investigate the deformation behavior and microstructural characteristics of Al-8%Ti, Al-12%Ti and Al-16%Ti (wt%) alloys, which were mechanically alloyed and consolidated by vacuum hot pressing, A13Ti intermetallic phases were formed with sizes of few hundred nanometers in the mechanically alloyed Al-Ti alloys. The compressive strength of mechanically alloyed AA-Ti alloys increased with decroasing the temperature and with increasing the strain rate. The strain rate sensitivities of Al-8%Ti, Al-12%Ti and Al-16%Ti alloys were measured 0.02,0.03, and 0.14, respectively, at 35$0^{\circ}C$.

  • PDF

Effect of Fe Addition on Mechanical Properties and Microstructure of As-Extruded Hypereutectic Al-Si-Fe Alloy (Fe가 첨가된 과공정 Al-Si-Fe합금 압출재의 기계적특성 및 미세조직에 관한 연구)

  • Lee, S.D.;Kim, D.H.;Beck, A.R.;Lim, S.G.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.123-129
    • /
    • 2019
  • Hypereutectic Al-Si alloys have been widely utilized for wear-resistant components in the automotive industry. In order to expand the application of Hypereutectic Al-Si alloys, the addition of alloying elements forming a stable precipitate at high temperature is required. Thermally stable inter metallic compounds can be formed through the addition of transition elements such as Fe, Ni to Al alloys. However, the amount of transition element to be added to Al alloys is limited due to their low solid solubility. Also, hypereutectic Al-Si-Fe alloys form coarse primary Si phases and needle-shaped intermetallic compounds during solidification in the general casting processes. In this study, the effects of the destruction of Intermetallic compound and Si phase are investigated via hot extrusion. Both the microstructure and mechanical properties are discussed under different extrusion conditions.

Mechanical Behavior of $Al_2O_3/Cr_2O_3-ZrO_2/HfO_2$ System ($Al_2O_3/Cr_2O_3-ZrO_2/HfO_2$ 계의 기계적 거동)

  • 신동우;오근호;이종근
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.42-52
    • /
    • 1985
  • Several $Al_2O_3$-based polycrystalline which had different dopant ratio in the range of 0.5mol% were prepared by doping pure $Cr_2O_3$ $HfO_2$. Single crystalline which had same composition with above polycrystalline were made by means of floating zone method. This study examined the role of each dopant for enhancing the mechanical properties of $Al_2O_3$-based Ceramics. Optical micrographs $({ imes}200)$ of $Al_2O_3-Cr_2O_3$ single crystal showing not only radial crack (rc) on the specimen surface but median crack(mc) and lateral crack(lc) under surface at the edge of indentation mark. Fracture toughness of Al2O3-based Ceramics was increased with $ZrO_2$ content. Alloying effect of $Cr_2O_3$ contributed to the hardness of $Al_2O_3$ based ceramics.

  • PDF

Fabrication of Rapidly Solidified Al-20wt%Si-5wt%Fe Alloy Powder and Mechanical Properties of its Extrudates (급속응고 Al-20wt%Si-5wt%Fe 합금분말 압출재의 강도에 관한 연구)

  • 김택수
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.66-71
    • /
    • 1994
  • Optical microstructures and mechanical properties of Na gas atomized Al-20Si-5Fe alloying powder and its hot extrudates were studied on 3 different types of powder size distribution. This powder showed the size distribution of 10~210 $\mu\textrm{m}$. Also the microstructures of $\alpha$-Al, primary and eutectic Si and needle shaped intermetallic compounds were observed by optical microscope. These needle shaped intermetallic compounds were identified as ${\delta}Al_4FeSi_2$- by XRD and EDX analysis. The ultimate tensile strength(UTS) of these alloy extrudates was increased from 324 to 390 MPa with decreasing powder size range from 120~210 $\mu\textrm{m}$ to 10~64 $\mu\textrm{m}$. A value of Micro-vic-kers hardness was simillar to the result of UTS. These extrudates showed better wear resistance than those of Al-20Si-2X(X : Ni, Cr, Zr), although they are insensitive to the size distribution. These results indicate that the presentation of ${\delta}Al_4FeSi_2$ intermetallic compounds contributed to the wear resistance improvement.

  • PDF

A Study of Production, Hot Consolidation, Secondary Recrystallization and Mechnical Property Assesment of Mechanically Alloyed $NiAl-Fe-AiN-Al_2O_3$ (기계적 합금화에 의한 $NiAl-Fe-AIN-Al_2O_3$ 합금분말의 제조, 열간 성형, 이차재결정화 및 기계적 성질 평가에 관한 연구)

  • 이순철
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.111-118
    • /
    • 1999
  • Ni(Fe)Al powders containing a homogeneous distribution of the in-situ formed AIN and $Al_2O_3$ dispersoids have been produced by mechanical alloying process in a controlled atmosphere using high energy attrition mill. The powders have been successfully consolidated by hot extrusion process. The phase information investigated by TEM and XRD analysis reveals that Fe can be soluble up to 20% to the NiAl phase ($\beta$) at room temperature after MA process. Subsequent thermomechanical treatment under specific condition has been tried to induce secondary recrystallization (SRx) to improve high temperature properties, however, the clear evidence of SRx was not obtained in this material. Mechanical properties in term of strength at room temperature as well as at high temperatures have been improved by the addition pf AIN, and the room temperature ductility has been shown to be improved after heat treatment, presumably due to the precipitation of second phase of $\alpha$ in this material.

  • PDF

Fabrication and Mechanical Property of $Al_2$O$_.3$/Al Composite by Pressureless Infiltration (무가압 침윤법에 의한 $Al_2$O$_.3$/Al 복합재료 제조와 기계적 특성)

  • 이동윤;박상환;이동복
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.303-309
    • /
    • 1998
  • The fabrication of Al2O3/Al composite by pressureless infiltration was investigated by the change of Mg and Si content in Al alloy infiltration process and infiltration atmosphere. The effect of alloying elements infiltration atmosphere and interfacial reactants between Al alloy matrix and Al2O3 particles were in-vestigated in terms of bendingstrength and harness test,. The fabrication of Al2O3/Al composite by the vestigated in terms of bending strength and hardness test. The fabrication of Al2O3/Al composite by the pressureless infiltration was done in nitrogen atmosphere with Mg in Al alloy. It was successfully fabricated at $700^{\circ}C$ according to Mg contents in Al alloy and infiltration condition. Because Mg in the Al alloy and ni-trogen atmosphere of infiltratio condition produced Mg-N compound(Mg3N2) it decreased the wetting an-gle between molten Al alloy and Al2O3 particles by coating on surface of Al2O3 particles. The fracture strength of Al2O3/Al-Mg composite was 800MPa and Al2O3/Al-Si-Mg composite was 400MPa. Si in Al alloy decreased the interfacial strength between Al alloy matrix and Al2O3 particles.

  • PDF

Mechanical Aalloying Behavior of $Al_3$Hf 및 $Al_3$Ta Intermetallic Compounds by SPEX Mill and the Effect of Ternary Additions on the Formation of $Ll_2$ Phase (SPEX mill을 이용한 $Al_3$Hf 및 $Al_3$Ta 금속간화합물의 기계적합금화 거동과 $Ll_2$상형성에 미치는 제 3 원소 첨가의 영향)

  • Lee, Seong-Hun;Choe, Jong-Hyeon;Kim, Jun-Gi;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.569-574
    • /
    • 2000
  • To improve the ductility of $Al_3Hf$ and $Al_3Ta$ intermetallic compounds, which are the potential temperature structural materials, the mechanical alloying behaviour and the effect of ternary additions on the $Ll_2$ phase formation were investigated. During the mechanical alloying by the SPEX mill, the $Ll_2$ $Al_3Hf$ intermetallic compound was formed after 6 hours of milling in AL-25%Hf system. In AL-25%Ta system, however, only the $D0_{22}$ $Al_3Ta$ intermetallic compound was formed until 30 hours of milling and the $Ll_2$ phase was not observed. In AL-12.5%M-25%Ta(M=Cu, Zn, Mn, Fe, Ni) systems, the additions of Cu and Zn had no effect on the $D0_{22}$ structure of the binary $Al_3Hf$ and the additions of Mn, Fe and Ni produced the amorphous phase. Therefore it was considered that these ternary additions could not overcome the energy difference between $Ll_2$ and $D0_{22}$ structures in the $Al_3Hf$ intermetallic compound. In AL-12.5%M-25%Hf(M=Cu, Zn, Mn, Fe, Ni)systems, the additions of Cu and Zn did not affect the $Ll_2$ structure of the binary $Al_3Hf$ but the additions of oMn, Fe and Ni produced the amorphous phase as they did in AL-12.5%M-25%Ta systems. Therefore, it was considered that the Ni, Mn and Fe additions promote the formation of amorphous phase in $Al_3X$ intermetallic compounds.

  • PDF

Effect of Alloying Elements (Cu, Al, Si) on the Electrochemical Corrosion Behaviors of TWIP Steel in a 3.5 % NaCl Solution (3.5% NaCl 수용액 내 TWIP강의 부식거동에 미치는 합금원소 (Cu, Al, Si)의 영향)

  • Kim, Si-On;Hwang, Joong-Ki;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.300-311
    • /
    • 2019
  • The corrosion behaviors of twinning-induced plasticity (TWIP) steels with different alloying elements (Cu, Al, Si) in a neutral aqueous environment were investigated in terms of the characteristics of the corrosion products formed on the steel surface. The corrosion behavior was evaluated by measuring potentiodynamic polarization test and electrochemical impedance spectroscopy. For compositional analysis of the corrosion products formed on the steel surface, an electron probe x-ray micro analyzer was also utilized. This study showed that the addition of Cu to the steel contributed to the increase in corrosion resistance to a certain extent by the presence of metallic Cu in discontinuous form at the oxide/steel interface. Compared to the case of steel with Cu, the Al-bearing specimen exhibited much higher polarization resistance and lower corrosion current by the formation of a thin Al-enriched oxide layer. On the other hand, Si addition (3.0 wt%) to the steel led to an increase in grain size, which was twice as large as that of the other specimens, resulting in a deterioration of the corrosion resistance. This was closely associated with the localized corrosion attacks along the grain boundaries by the formation of a galvanic couple with a large cathode-small anode.