• 제목/요약/키워드: Al-Zn

검색결과 1,999건 처리시간 0.031초

Mg-8%Al 주조 합금의 부식 거동에 미치는 Zn 첨가의 영향 (Effect of Zn Addition on Corrosion Behavior of Mg-8%Al Casting Alloy)

  • 황인제;문정현;전중환;김영직
    • 한국주조공학회지
    • /
    • 제35권3호
    • /
    • pp.53-61
    • /
    • 2015
  • Effects of Zn addition on the microstructure and corrosion behavior of Mg-8%Al-(0-1)%Zn casting alloys were investigated. With increasing Zn content, the amount of ${\beta}(Mg_{17}Al_{12})$ phase increased, while ${\alpha}$-(Mg) dendritic cell size became reduced. The corrosion rate decreased continuously with the increase in the Zn content. The evaluation of the microstructural evolution indicates that the improved barrier effect of ${\beta}$ particles formed more continuously along the dendritic cell boundaries and the incorporation of more ZnO into the surface corrosion product, by which the absorption of $Cl^-$ ions is impeded, are responsible for the better corrosion resistance in relation to the Zn addition.

Organic-Inorganic Nanohybrid Structure for Flexible Nonvolatile Memory Thin-Film Transistor

  • 윤관혁;;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.118-118
    • /
    • 2011
  • The Nano-Floating Gate Memory(NFGM) devices with ZnO:Cu thin film embedded in Al2O3 and AlOx-SAOL were fabricated and the electrical characteristics were evaluated. To further improve the scaling and to increase the program/erase speed, the high-k dielectric with a large barrier height such as Al2O3 can also act alternatively as a blocking layer for high-speed flash memory device application. The Al2O3 layer and AlOx-SAOL were deposited by MLD system and ZnO:Cu films were deposited by ALD system. The tunneling layer which is consisted of AlOx-SAOL were sequentially deposited at $100^{\circ}C$. The floating gate is consisted of ZnO films, which are doped with copper. The floating gate of ZnO:Cu films was used for charge trap. The same as tunneling layer, floating gate were sequentially deposited at $100^{\circ}C$. By using ALD process, we could control the proportion of Cu doping in charge trap layer and observe the memory characteristic of Cu doping ratio. Also, we could control and observe the memory property which is followed by tunneling layer thickness. The thickness of ZnO:Cu films was measured by Transmission Electron Microscopy. XPS analysis was performed to determine the composition of the ZnO:Cu film deposited by ALD process. A significant threshold voltage shift of fabricated floating gate memory devices was obtained due to the charging effects of ZnO:Cu films and the memory windows was about 13V. The feasibility of ZnO:Cu films deposited between Al2O3 and AlOx-SAOL for NFGM device application was also showed. We applied our ZnO:Cu memory to thin film transistor and evaluate the electrical property. The structure of our memory thin film transistor is consisted of all organic-inorganic hybrid structure. Then, we expect that our film could be applied to high-performance flexible device.----못찾겠음......

  • PDF

Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구 (Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy)

  • 서위걸;;이희남;양동주;박순균;최시훈
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.

ZnO:Al,In 박막의 구조적 및 전기적 특성 (Structural and electrical properties of ZnO:Al, In thin film)

  • 박경일;서무룡;홍범표;김정규;전춘배;박기철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.395-397
    • /
    • 1998
  • NH$_{3}$ gas sensitive ZnO:Al, In thin films were prepared by the heat treatment following continuous deposition of very thin In layer and ZnO:Al layer to obtain the modified surface morphology for good sensitivity. Dependence of the structural electrical and optical properties of them on heat treatment temperature was investigated by x-ray diffraction, SEM, 4-point probe method and spectrophotometer.

  • PDF

가스압 변화에 따라 flexible 기판상에 제작한 Al이 첨가된 ZnO 박막의 특성

  • 김경환;조범진;금민종
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2006년도 춘계학술대회
    • /
    • pp.164-167
    • /
    • 2006
  • In this paper, we prepared Al doped ZnO thin films by using facing targets sputtering method. Al doped ZnO thin film was deposited with different working pressure on flexible substrate. We prepared Al doped ZnO thin film at room temperature, because the flexible substrate has weak thermal resistance. From the results, we could obtain thin film with a resistivity of $8.4{\times}10^{-4}{\Omega}cm$, an average transmittance of over 80% and a film thickness of 200nm.

  • PDF

Electron Paramagnetic Resonance Study of Al-incorporated ZnO:Mn Diluted Magnetic Semiconductors

  • Park, Jun Kue;Lee, K.W.;Choi, D.M.;Lee, Cheol Eui
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1884-1888
    • /
    • 2018
  • We have employed electron paramagnetic resonance spectroscopy and magnetization measurements in order to study the effect of Al-incorporation on the magnetic interactions in ZnO:Mn diluted magnetic semiconductors. Al-doping is shown to decrease the antiferromagnetic correlation and to increase the ferromagnetic interaction, which is attributed to the hydrogen-mediated ferromagnetic Mn complexes in our Mn-doped ZnO samples.

ZnO-Al2O3-Cr2O3 계 안료 합성 및 유약에서의 발색 (Synthesis of ZnO-Al2O3-Cr2O3 Pigments and Coloring in Glazes)

  • 최수녕;이용석;이병하
    • 한국세라믹학회지
    • /
    • 제45권5호
    • /
    • pp.256-262
    • /
    • 2008
  • $ZnAl_{1-x}\;Cr_xO_4$ solid solutions were synthesized as pink pigments with and without mineralizer. The pigments were examined to optimize color development conditions of temperature and $Cr_2O_3$ contents. The characteristics of synthesized pigments were analyzed by XRD, XPS, FT-IR and UV-vis spectrophotometer. While samples without mineralizer fired at $1300^{\circ}C$, showed $ZnAl_2O_4$ and $ZnCr_2O_4$ spinel in XRD analysis. While samples with mineralizer resulted in $ZnAl_2O_4$. As a results, the pigments show pink color and most effective pink color was obtained at X=0.15 and $1250^{\circ}C$ when mineralizer was used. The chromatic coordinates are $L^*$ 58.61 $a^*$ 24.48, and $b^*$ 9.60.

고강도 Al-Zn기 다이캐스팅 합금개발에 관한 연구 II: 중력주조, 유동성평가 (A Study on Development of High Strength Al-Zn Based Alloy for Die Casting II: Evaluation of Fluidity and Gravity Casting)

  • 신상수;임영훈;김억수;임경묵
    • 대한금속재료학회지
    • /
    • 제50권7호
    • /
    • pp.531-538
    • /
    • 2012
  • In this study, we evaluated the fluidity of the Al-Zn based alloys which exhibit excellent mechanical properties. We conducted computer simulations of fluid flow using the results of DSC, DTA analysis and Java-based Materials Properties software (J. Mat. Pro). Such computer simulations were then compared with the results obtained from experimental observations. The computer simulation results and the experimental results were very similar in fluidity length. It was found that the fluidity length of Al-Zn alloys is improved by increasing the Zn content while decreasing the solidus temperature of an alloy. In addition, we elucidate the effect of Zn addition on variations in different mechanical properties and the microstructure characteristics of (Al-xZn3Cu0.4Si0.3Fe) x=20, 30, 40, and 45 wt% alloys fabricated by gravity casting.

New Corrosion-Resistant Zn-Al-Mg Alloy Hot-Dip Galvanized Steel Sheet

  • Kohei Tokuda;Yasuto Goto;Mamoru Saito;Hiroshi Takebayashi;Takeshi Konishi;Yuto Fukuda;Fumiaki Nakamura;Koji Kawanishi;Kohei Ueda;Hidetoshi Shindo
    • Corrosion Science and Technology
    • /
    • 제23권2호
    • /
    • pp.121-130
    • /
    • 2024
  • In recent years, Zn-Al-Mg alloy galvanized steel sheets have been widely used as coated steel sheets to support social capital in the infrastructure field. A feature of Zn-Al-Mg alloy-coated steel sheets is that they provide a better corrosion protection period than Zn-coated steel sheets. In this study, the corrosion resistance of a new Zn-Al-Mg alloy-coated steel sheet was investigated and compared to that of conventional commercially available coated steel sheets. The investigation confirmed that increasing the Mg concentration in the Zn-Al-Mg-coated steel sheet improved corrosion resistance, which was more than 10 times that of the galvanized steel sheet specified in JIS G 3302. The study findings also confirmed that the corrosion resistance reached more than twice that of the coated steel sheet specified in JIS G 3323. If such galvanized steel sheets are applied to social infrastructures that are exposed to severely corrosive environments, the service life of the infrastructure might be extended.

냉간압연가공에 따른 Al-5.5Mg-2.9Si계와 Al-7Mg-0.9Zn계 합금의 압연가공성 및 기계적 특성 차이 (Differences in Cold Rolling Workability and Mechanical Properties between Al-Mg-Si and Al-Mg-Zn System Alloys with Cold Rolling)

  • 양지훈;이성희
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.628-634
    • /
    • 2016
  • The cold rolling workability and mechanical properties of two new alloys, designed and cast Al-5.5Mg-2.9Si and Al-7Mg-0.9Zn alloys, were investigated in detail. The two alloy sheets of 4 mm thickness, 30 mm width and 100 mm length were reduced to a thickness of 1 mm by multi-pass rolling at ambient temperature. The rolling workability was better for the Al-7Mg-0.9Zn alloy than for the Al-5.5Mg-2.9Si alloy; in case of the former alloy, edge cracks began to occur at 50% rolling reduction, and their number and length increased with rolling reduction; however, in the latter alloy, the sheets did not have any cracks even at higher rolling reduction. The mechanical properties of tensile strength and elongation were also better in the Al-7Mg-0.9Zn alloy than in Al-5.5Mg-2.9Si alloy. Work hardening ability after cold rolling was also higher in the Al-7Mg-0.9Zn alloy than in the Al-5.5Mg-2.9Si alloy. At the same time, the texture development was very similar for both alloys; typical rolling texture developed in both alloys. These differences in the two alloys can primarily be explained by the existence of precipitates of $Mg_2Si$. It is concluded that the Al-7Mg-0.9Zn alloy is better than the Al-5.5Mg-2.9Si alloy in terms of mechanical properties.