• 제목/요약/키워드: Al-Si-Mg Alloy

검색결과 255건 처리시간 0.023초

고압 금형 주조용 Al-4 wt%Mg-0.9 wt%Si계 합금의 인장특성에 미치는 Fe, Mn함량의 영향 (Effect of Fe, Mn Content on the Tensile Property of Al-4 wt%Mg-0.9 wt%Si Alloy System for High Pressure Die Casting)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제33권3호
    • /
    • pp.103-112
    • /
    • 2013
  • Effect of Fe and Mn contents on the tensile properties of Al-4 wt%Mg-0.9 wt%Si alloy system has been studied. Common phases of Al-4 wt%Mg-0.9 wt%Si alloy system were ${\alpha}$-Al, $Mg_2Si$, ${\alpha}-Al_{12}(Fe,Mn)_3Si$ and ${\beta}-Al_5FeSi$. As Fe content of Al-4 wt%Mg-0.9 wt%Si alloy system increased from 0.15 wt% to above 0.3 wt%, ${\beta}-Al_5FeSi$ compound appeared. When Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, morphology of plate shaped ${\beta}-Al_5FeSi$ compound changed to chinese script ${\alpha}-Al_{12}(Fe,Mn)_3Si$. As Fe content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Mn alloy increased from 0.15 wt% to 0.4 wt%, tensile strength of the as-cast alloy decreased from 191 MPa to 183 MPa and, elongation of the alloy also decreased from 8.0% to 6.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with low Mn/Fe ratio of the alloy. However, when Mn content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Fe alloy increased from 0.3 wt% to 0.5 wt%, tensile strength of as-cast alloy increased from 181 MPa to 194 MPa and, elongation of the alloy increased from 6.8% to 7.0%. These improvements attribute to the morphology change from ${\beta}-Al_5FeSi$ phase to chinese script, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ phase shape-modified from with high Mn/Fe ratio of the alloy.

고압 금형주조용 Al-9%Si-0.3%Mg 합금의 Fe, Mn 함량이 인장특성에 미치는 영향 (Effect of Fe and Mn Contents on the Tensile Property of Al-9%Si-0.3%Mg Alloy for High Pressure Die Casting)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제31권1호
    • /
    • pp.18-25
    • /
    • 2011
  • Effect of Fe and Mn contents on the tensile properties has been studied in Al-9wt%Si-0.3wt%Mg alloy. As Fe content of Al-9wt%Si-0.3wt%Mg-0.5wt%Mn alloy increased from 0.15wt% to 0.45wt%, tensile strength of as-cast alloy decreased from 192 MPa to 174 MPa, and elongation of the alloy also decreased from 4.8% to 4.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with high Fe/Mn ratio of the alloy. However when Mn content of Al-9wt%Si-0.3wt%Mg-0.45wt%Fe alloy increased from 0.3wt% to 0.5wt%, tensile strength of T6 aged alloy increased from 265 MPa to 275 MPa, and elongation of the alloy increased from 2.3% to 3.6%. These improvements attribute to chinese script, ${\alpha}-Al_{15}(Mn,Fe)_3Si_2$ phase shape-modified from ${\beta}-Al_5FeSi$ phase with low Fe/Mn ratio of the alloy.

듀오캐스트 Al-Mg-Si/Al 하이브리드 합금의 미세조직과 기계적 변형 특성 (Microstructure and Mechanical Behavior of Al-Mg-Si/Al Hybrid Alloy by Duo-casting)

  • 한지민;김종호;박준표;장시영
    • 한국주조공학회지
    • /
    • 제32권6호
    • /
    • pp.269-275
    • /
    • 2012
  • Al-Mg-Si/Al hybrid alloy was prepared by Duo-casting and the mechanical behavior was evaluated based on their microstructure and mechanical properties. The hybrid aluminum alloy included the Al-Mg-Si alloy with fine eutectic structure, pure Al with the columnar and equiaxed crystals, and the macro-interface existing between Al-Mg-Si alloy and pure Al. The growth of columnar grains in pure Al occurred from the macro-interface. The tensile strength, 0.2% proof stress and bending strength of the hybrid aluminum alloy were almost similar to those of pure Al, and the elongation was much higher than the Al-Mg-Si alloy. The fracture of the hybrid alloy took place in pure Al side, indicating that the macro-interface was well bonded and the mechanical behavior strongly depends on the limited deformation in pure Al side.

고압 금형 주조용 Al-4%Mg-0.9%Si 합금의 주조특성에 미치는 Fe, Mn 함량의 영향 (Effect of Fe, Mn Content on the Castability of Al-4%Mg-0.9%Si Alloys for High Pressure Die Casting)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제33권2호
    • /
    • pp.55-62
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-4wt%Mg-0.9wt%Si system alloy has been studied. According to the analysis of cooling curve for Al-4wt%Mg-0.9wt%Si-0.3wt%Fe-0.3/0.5wt%Mn alloy, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}-Al_5FeSi$ phases crystallized above eutectic temperature of $Mg_2Si$. Therefore, these phases affected both the fluidity and shrinkage behaviors of the alloy during solidification. As Fe and Mn contents of Al-4wt%Mg-0.9wt%Si system alloy increased from 0.1 wt% to 0.4 wt% and from 0.3 wt% to 0.5 wt% respectively, the fluidity of the alloy decreased by 26% and 33%. When Fe content of the alloy increased from 0.1 wt% to 0.4 wt%, 23% decrease of macro shrinkage and 19% increase of micro shrinkage appeared. Similarly, Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, 11% decrease of macro shrinkage and 14% increase of micro shrinkage appeared. Judging from the castability of the alloy, Al-4wt%Mg-0.9wt%Si alloy with low content of Fe and Mn, 0.1 wt% Fe and 0.3 wt% Mn, is recommendable.

Al-Mg 계 다이캐스팅 합금의 미세조직 및 기계적 성질에 미치는 Mg 및 Si의 영향 (Effects of Mg and Si on Microstructure and Mechanical Properties of Al-Mg Die Casting Alloy)

  • 조재익;김철우
    • 한국주조공학회지
    • /
    • 제32권5호
    • /
    • pp.219-224
    • /
    • 2012
  • The effects of Mg and Si contents on the microstructure and mechanical properties in Al-Mg alloy (ALDC6) were investigated. The results showed that phase fraction and size of $Mg_2Si$ and $Al_{15}(Fe,Mn)_3Si_2$ phase in the microstructure of Al-Mg alloy were increased as the Mg and Si contents were raised from 2.5 to 3.5 wt%. With Si content of 1.5 wt%, freezing range of the alloy was significantly reduced and solidification became more complex during the final stage of solidification. While there was no significant influence of Mg contents on mechanical properties, Si contents up to 1.5 wt%, strongly affected the mechanical properties. Especially elongation was reduced by about a half with more than 1.0 wt%Si in the alloy. The bending and impact strength were decreased with increased amount of Si in the alloy, as well. The lowered mechanical properties are because of the growth of particle shaped coarse $Mg_2Si$ phase and precipitation of the needle like $\beta$-AlFeSi in the microstructure at the last region to solidify due to presence of excess amount of Si in the alloy.

경량화 Mg-Li-Al합금의 내식성에 미치는 Si의 영향 (Effect of Si on the Corrosion Properties of Mg-Li-Al Light Alloy)

  • 김순호
    • 자원리싸이클링
    • /
    • 제7권5호
    • /
    • pp.52-57
    • /
    • 1998
  • 현재 구조용 합금으로는 최경량화인 Mg-Li-Al합금의 내식성에 미치는 Si의 영향을 전기화학적 분극시험에 의하여 조사하였다. 전기화학적 분극시험은 ${KH}_{2}{PO}_{5}$·NaOH 완충용액으로 pH7로 고정한 0.03% NaCl 전해액에서 Mg-Li-Al(A4)합금과 Mg-Li-Al에 Si을 0.48 wt% 첨가한 (S5)합금에 대하여 전류밀도에 따른 전위의 변화를 측정하였다. 실험 결과 미량의 Si를 첨가한 Mg-Li-Al-Si 합금의 경우가 Si을 첨가하지 않은 Mg-Li-Al 합금의 경우보다 부식속도가 증가하였으며, 부식생성물의 분포범위도 넓었고 생성량도 많았다. 이러한 실험결과를 고려해 볼 때, Mg-Li-Al 합금에 미량이지만 Sidl 첨가됨으로써 Mg-Li-Al 합금의 내식성이 감소된다고 판단된다. 따라서 강도특성이 향상을 목적으로 첨가하는 Si의 첨가량에 대해서는 적절한 양의 조정이 필요하다.

  • PDF

냉간압연가공에 따른 Al-5.5Mg-2.9Si계와 Al-7Mg-0.9Zn계 합금의 압연가공성 및 기계적 특성 차이 (Differences in Cold Rolling Workability and Mechanical Properties between Al-Mg-Si and Al-Mg-Zn System Alloys with Cold Rolling)

  • 양지훈;이성희
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.628-634
    • /
    • 2016
  • The cold rolling workability and mechanical properties of two new alloys, designed and cast Al-5.5Mg-2.9Si and Al-7Mg-0.9Zn alloys, were investigated in detail. The two alloy sheets of 4 mm thickness, 30 mm width and 100 mm length were reduced to a thickness of 1 mm by multi-pass rolling at ambient temperature. The rolling workability was better for the Al-7Mg-0.9Zn alloy than for the Al-5.5Mg-2.9Si alloy; in case of the former alloy, edge cracks began to occur at 50% rolling reduction, and their number and length increased with rolling reduction; however, in the latter alloy, the sheets did not have any cracks even at higher rolling reduction. The mechanical properties of tensile strength and elongation were also better in the Al-7Mg-0.9Zn alloy than in Al-5.5Mg-2.9Si alloy. Work hardening ability after cold rolling was also higher in the Al-7Mg-0.9Zn alloy than in the Al-5.5Mg-2.9Si alloy. At the same time, the texture development was very similar for both alloys; typical rolling texture developed in both alloys. These differences in the two alloys can primarily be explained by the existence of precipitates of $Mg_2Si$. It is concluded that the Al-7Mg-0.9Zn alloy is better than the Al-5.5Mg-2.9Si alloy in terms of mechanical properties.

Al-Mg계 합금과 Al-Si계 합금의 다이캐스팅 응고과정의 차이 (Difference in Solidification Process between Al-Mg Alloy and Al-Si Alloy in Die-Casting)

  • 최세원;김영찬;조재익;강창석;홍성길
    • 한국재료학회지
    • /
    • 제22권2호
    • /
    • pp.82-85
    • /
    • 2012
  • The effect of the alloy systems Al-Mg alloy and Al-Si alloy in this study on the characteristics of die-casting were investigated using solidification simulation software (MAGMAsoft). Generally, it is well known that the casting characteristics of Al-Mg based alloys, such as the fluidity, feedability and die soldering behaviors, are inferior to those of Al-Si based alloys. However, the simulation results of this study showed that the filling pattern behaviors of both the Al-Mg and Al-Si alloys were found to be very similar, whereas the Al-Mg alloy had higher residual stress and greater distortion as generated due to solidification with a larger amount of volumetric shrinkage compared to the Al-Si alloy. The Al-Mg alloy exhibited very high relative numbers of stress-concentrated regions, especially near the rib areas. Owing to the residual stress and distortion, defects were evident in the Al-Mg alloy in the areas predicted by the simulation. However, there were no visible defects observed in the Al-Si alloy. This suggests that an adequate die temperature and casting process optimization are necessary to control and minimize defects when die casting the Al-Mg alloy. A Tatur test was conducted to observe the shrinkage characteristics of the aluminum alloys. The result showed that hot tearing or hot cracking occurred during the solidification of the Al-Mg alloy due to the large amount of shrinkage.

고신율 금형주조용 Al-9wt%Si-Mg계 합금의 주조특성에 미치는 Fe, Mn함량의 영향 (Effect of Fe, Mn Content on the Castability in Al-9wt%Si-Mg System Alloys for High Elongation)

  • 김헌주;정창열
    • 한국주조공학회지
    • /
    • 제33권6호
    • /
    • pp.233-241
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-9wt%Si-xMg-yFe-zMn alloy has been studied. The alloy was composed of ${\alpha}$-Al phase, Al+eutectic Si phase, ${\beta}$-Al5FeSi compound and chinese script ${\alpha}$-$Al_{15}(Mn,Fe)_3Si_2$ compound. ${\beta}$-$Al_5FeSi$ and ${\alpha}$-$Al_{15}(Mn,Fe)_3Si_2$ compounds assumed to effect the fluidity and shrinkage behaviors of the alloy during solidification due to the crystallization of ${\alpha}$-$Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}$-$Al_5FeSi$ compounds above eutectic temperature. As Fe and Mn contents of Al-9wt%Si-0.3wt%Mg system alloy increased from 0.15wt% to 0.6wt% and from 0.3wt% to 0.7wt%, fluidity of the alloy decreased by 5.7% and 3.3%, respectively. And as Mg content of Al-9wt%Si-0.45wt%Fe-0.5wt%Mn system alloy increased from 0.3wt% to 0.4wt%, fluidity of the alloy decreased by 8.6%. When Fe content of the alloy increased from 0.15wt% to 0.6wt%, macro shrinkage ratio decreased from 6.1% to 4.1%, and micro shrinkage ratio increased from 0.04% to 0.24%. Similarly, Mn content of the alloy increased from 0.3wt% to 0.7wt%, macro shrinkage ratio decreased from 6.0% to 4.5% and micro shrinkage ratio increased from 0.12% to 0.18%. Judging from the castability of the alloy, Al-9wt%Si-0.3wt%Mg alloy with low content of Fe and Mn, 0.1wt% Fe and 0.3wt% Mn, is recommendable.

Solidification Cracking Susceptibility of Al-Mg-Si Alloy Laser Welds

  • Yoon, J.W.
    • International Journal of Korean Welding Society
    • /
    • 제2권2호
    • /
    • pp.42-46
    • /
    • 2002
  • The solidification cracking susceptibilities of Al-Mg-Si alloy laser welds were assessed using the self-restraint tapered specimen crack test. The cracking susceptibility of 6061 and 6082 Al-Mg-Si alloy laser welds was substantially reduced when the filler wire containing high Si such as Al-12 wt.% Si (4047A) was used. The amount of eutectic was observed to affect the solidification cracking of Al-Mg-Si alloy laser welds. Abundant eutectic seems to heal the cracking and reduces the cracking susceptibility, while an initial increase in eutectic liquid leads to the increased cracking tendency.

  • PDF