• Title/Summary/Keyword: Al-Si-Mg합금

Search Result 199, Processing Time 0.021 seconds

A Study on the Feeding Distance of Aluminium Alloy Casting (알루미늄합금(合金) 주물(鑄物)의 급탕(給湯)거리에 관(關)한 연구(硏究))

  • Jung, Woon-Jae;Kim, Dong-Ok
    • Journal of Korea Foundry Society
    • /
    • v.3 no.1
    • /
    • pp.13-21
    • /
    • 1983
  • In order to determine the feeding distance of aluminiun alloys (Alsi7Mg and AlCu4Ti) bar castings in the sand mold, the distance of the sound castings has been observed by radiograph for various risers, melt treatment, and casting design. Variation of porosity and hardness with the distance from the riser were also measured in order to determine the casting soundness. The results obained were as follows; 1) The modulus of riser should be 1.4 times of the casting`s 2) The maximum distance which can be made sound is greatly dependent on chemical composition and ingate location, and follows the rules given by the formula; a) When the melt flows into the casting first, and the riser afterward, D = 37.7 ${\sqrt{T}}$ for AlSi7Mg D = 31.2 ${\sqrt{T}}$ for pure aluminium D ${\ge}$ 54.8 ${\sqrt{T}}$ for AlCu4Ti Where T = casting thickness in mm Of this maximum distance, $aa{\sqrt{T}}$ for AlSi7Mg and 7.5 ${\sqrt{T}}$ for pure aluminium is made sound by the chilling effect of the casting edge. b) When the melt flows into the casting passing through the riser, $30{\times}30{\times}600mm$ bars can be made sound in all cases 3) Percentage of porosity is higer in AlCu4Ti than AlSi7Mg. And it is increased gradually by moving closer to the riser in case of $30{\times}30{\times}600mm$ bars, but for the $30{\times}30{\times}600mm$ bars it is increased gradually by moving closer to the center of bars. 4) Hardness variation is similar to the tendency of porosity. And it decreased gradually with approaching to the center in case of $30{\times}30{\times}600mm$ bars.

  • PDF

Formation of Oxide Inclusions in the Molten Aluminium Alloys (알루미늄합금 용탕중의 산화개재물 형성)

  • Lim, Jeong-Ho;Kim, Ki-Bae;Yoon, Woo-Yung;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.439-449
    • /
    • 1998
  • Formation of oxide inclusions in the molten aluminium alloys during solidification is investigated. The oxidation tendency of both Al-4.5wt%Cu and Al-7wt%Si alloys is increased with melt temperature, particularly over $700^{\circ}C$. However, an Al-5wt%Mg alloy exhibits a decreasing mode over $800^{\circ}C$. The oxidation behavior with holding time shows the S curve shape for all of the alloys. It is shown that the mechanism of oxidation of Al-5wt%Mg alloy has a two step process different from that of Al-4.5wt%Cu and Al-7wt%Si alloys. The species and morphology of oxide inclusions in each alloy is also shown. The microstructure was more coarsened during solidification when the melt contains a large amount of oxide inclusion than when it doesn't. This result can be explained in terms of both the hindrance of heat extraction by oxide film formed on the aluminium melt and the difference of heat capacity between the aluminium melt and oxide inclusion during solidification.

  • PDF

Effect of Ti and Sr on the Microstructure of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조합금의 미세조직에 미치는 Ti 및 Sr첨가 영향)

  • Jeong, Jae-Yeong;Kim, Gyeong-Hyeon;Kim, Chang-Ju
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.71-78
    • /
    • 1990
  • This investigation was undertaken to establish the technologies of grain refinement and modification, and to characterize material properties, essential for high quality aluminum alloy castings. Grain refinement seldom changed DAS and eutectic Si size, but largely decrease grain size. The variations of grain size induced by grain refinement had a great influence on the elongation without changes in the tensile strength or yield strength. The optimum Ti level lies between 0.1% and 0.16% to achieve the best possible mechanical properties. DAS and grain size were little affected, but eutectic Si size was greatly refined by modification. The variation of eutectic Si size had a great effect on the elongation, impact value, fracture toughness and fatigue crack propagation rate without changes in the tensile strength or yield strength. The Sr content of 0.015% is optimum to modification.

  • PDF

Effects of Mg Content on the Properties and Casting Characteristics of Al-2Zn-0.2Fe-xMg Alloys (Al-2Zn-0.2Fe-xMg 합금의 물성 및 주조특성에 미치는 Mg함량의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae;Ko, Se-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.86-90
    • /
    • 2012
  • Aluminium-silicon based casting alloys have received an attention for high electrical and thermal conductivity applications, however relatively low conductivity of Al-Si alloys often limits the application. Efforts have been made to develop new high conductivity aluminium casting alloys containing no or less silicon. In this study Al-Zn-Fe based alloys were selected as the new alloys, and the effect of Mg additions on their properties and casting characteristics were investigated. As the magnesium content was increased, the tensile strength of Al-2Zn-0.2Fe based alloy was remarkably increased, while the electrical conductivity was deteriorated. It was observed that the fluidity of the alloys was generally inversely proportional to the Mg content but the hot cracking resistance was rather proportional to it. Cooling curve analyses were carried out to measure the actual solidification range and dendrite coherency temperature.

The Optimal Solution Treatment Condition in a Al-Si-Cu AC2B Alloy (Al-Si-Cu계 AC2B 합금의 최적 용체화 처리 조건)

  • Jung, Jae-Gil;Park, June-Soo;Ha, Yang-Soo;Lee, Young-Kook;Jun, Joong-Hwan;Kang, Hee-Sam;Lim, Jong-Dae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.223-227
    • /
    • 2009
  • The precipitates, hardness, and tensile properties of Al-6.2Si-2.9Cu AC2B alloy were investigated with respect to solution treatment time at $500^{\circ}C$. $Al(Cu)-Al_2Cu$ eutectic, Si, ${\theta}-(Al_2Cu)$, and $Q-(Al_5Cu_2Mg_8Si_6)$ phases were observed in the as-cast specimen. With increasing the solution treatment time at $500^{\circ}C$, the $Al(Cu)-Al_2Cu$ eutectic and ${\theta}-(Al_2Cu)$ phases were gradually reduced and finally almost disappeared in 5 h. The mechanical properties, such as hardness, tensile strength, and elongation, were improved with solution treatment time until about 5 h due to the dissolution of the $Al_2Cu$ particles. With further holding time, the mechanical properties did not change much. The solution treated specimens for over 5 h at $500^{\circ}C$ exhibit almost the same tensile properties even after aging at $250^{\circ}C$ for 3.5 h. Accordingly, the optimal solution treatment condition of the Al-Si-Cu AC2B alloy is considered to be 5 h at $500^{\circ}C$.

Optimization of Solid Solution Treatment Process for a High Pressure Die Casting Al-10Si-0.3Mg-0.6Mn alloy to avoid Blistering and Improve the Strength of the Alloy (고압 다이캐스팅으로 제조된 Al-10Si-0.3Mg-0.6Mn 합금에서 blister 발생과 강도의 균형을 고려한 최적 열처리 공정 설계)

  • Kim, Soo-Bae;Cho, Young-Hee;Jo, Min-Su;Lee, Jung-Moo
    • Journal of Korea Foundry Society
    • /
    • v.40 no.3
    • /
    • pp.66-75
    • /
    • 2020
  • The aim of this study was to optimize a solid solution treatment for a high pressure die casting Al-10Si-0.3Mg-0.6Mn alloy to avoid blistering and to improve the strength of the alloy. To achieve this goal, the number density of the blisters and the strength of the alloy under various solid solution treatment (SST) conditions were evaluated. The SST was performed at 470, 490, 510 and 530℃ for 20, 60, 120, 240 and 480 min on the alloy. The number density of the blisters increased with the increasing temperature and time of the SST and the defect area fraction. The yield strength of the alloy after the T6 heat treatment increased with the increasing SST temperature and time. Based on the results, it is suggested that SST should be performed at 510℃ within 60 min. or at 470 and 490℃ within 240 min. to avoid blistering and to improve the strength.

Effect of Grain Size and Aging Conditions on Mechanical Properties of Al-Mg-X (X=Cr,Si) Alloy (Al-Mg-X (X=Cr, Si)합금의 기계적성질에 미치는 결정립크기와 시효조건의 영향)

  • Chang-Suk Han;Chan-Woo Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.77-85
    • /
    • 2023
  • In this study, the mechanical properties of the Al-Mg-X (X=Cr, Si) alloy, which clearly showed the influence of the specimen and grain size, were investigated by changing the specimen size extensively. In addition, the effect on the specimen size, grain size and aging condition on the mechanical properties of the grain refining alloy according to the addition of Cr was clarified, and the relationship between these factors was studied. As the specimen size decreased, the yield stress decreased and the fracture elongation increased. This change was evident in alloys with coarse grain sizes. Through FEM analysis, it was confirmed that the plastic deformation was localized in the parallel part of specimen S2. Therefore, when designing a tensile specimen of plate material, the W/L balance should be considered along with the radius of curvature of the shoulder. In the case of under-aged materials of alloys with coarse grain size, the fracture pattern changed from intergranular fracture to transgranular fracture as W/d decreased, and δ increased. This is due to the decrease in the binding force between grains due to the decrease in W. In the specimen with W/d > 40 or more, intergranular fracture occurred, and local elongation did not appear. Under-aged materials of alloys with fine grain size always had transgranular fracture over a wide range of W/d = 70~400. As W/d decreased, δ increased, but the change was not as large as that of alloys with coarse grain sizes. Compared to the under-aged material, the peak-aged material did not show significant dependence on the specimen size of σ0.2 and δ.

Effect of Electrolyte on Mechanical and Corrosion Properties of AZ91 Cast Magnesium Alloy Coated by Plasma Electrolytic Oxidation Method (플라즈마 전해 산화처리한 AZ91 주조마그네슘합금의 기계적 및 부식 특성에 미치는 전해질의 영향)

  • Kim, Bo-Sik;Lee, Du-Hyung;Chang, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.233-237
    • /
    • 2009
  • The effect of electrolyte on mechanical and corrosion properties of AZ91 magnesium alloy by plasma electrolytic oxidation (PEO) method was investigated. The coating layers formed in the silicate and the aluminate electrolytes showed porous structures. The small pores were randomly distributed on the coatings formed in aluminate electrolyte while the coatings formed in silicate electrolyte showed much bigger pores. In the aluminate electrolyte, the coatings were composed of Mg, MgO and $MgAl_2O_4$, whereas Mg, MgO, $MgAl_2O_4$ and $Mg_2SiO_4$ were identified in the coatings formed in silicate electrolyte. The hardness of coatings in the silicate electrolyte was higher than that of coating grown in the aluminate electrolyte. The AZ91 alloy coated in the silicate electrolyte had higher tensile strength and elongation than that coated in the aluminate electrolyte. In addition, the coatings formed in the silicate electrolyte showed much better corrosion resistance compared to the coatings formed in the aluminate electrolyte.

Cavitation damage characteristics of plasma electrolytic oxidation coatings prepared on marine grade Al alloy (플라즈마 전해 산화 처리된 해양환경용 Al 합금의 캐비테이션 손상 특성)

  • Lee, Jeong-Hyeong;Kim, Yong-Hwan;Kim, Yeon-Ju;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.132.2-132.2
    • /
    • 2017
  • 플라즈마 전해 산화(Plasma Electrolytic Oxidation, PEO)는 Al, Ti, Mg 합금과 같은 경량 금속소재에 대한 표면처리기술로서 주목을 받고 있다. PEO 처리에 의해 표면에 치밀하게 형성되는 세라믹 산화층은 우수한 내식성, 내마모성을 보유하기 때문에, 이와 같은 특성이 요구되는 분야에 적용하기 위한 연구가 활발하다. 특히 PEO 세라믹 코팅층의 응착마모(adhesive wear)와 절삭마모(abrasive wear)에 관한 연구는 상당부분 이루어지고 있으나, 캐비테이션 침식과 같은 침식마모(erosive wear) 특성에 관한 연구는 부족한 실정이다. 본 연구에서는 알루미늄 합금 소지에 제작된 PEO 코팅층의 캐비테이션 손상 특성을 고찰하였으며, 전해액 조성이 PEO 코팅층의 미세조직과 캐비테이션 손상 특성에 미치는 영향을 살펴보았다. PEO 처리를 위해 사용된 소재는 상용 5083-O합금 판재로서 $2cm{\times}2cm$로 절단하여, 에머리페이퍼로 1000번까지 연마하여 사용하였다. 사용된 전해액은 증류수에 KOH(1 g/L)을 base로 하여 $Na_2SiO_3$(2 g/L)의 첨가유무를 변수로 하였다. 시편을 양극으로 하고 STS304를 음극으로 하여 각각 DC 전원 공급기의 +극과 -극에 연결하였으며, 정전류 조건에서 30분간 $0.1A/cm^2$의 전류밀도를 인가하였다. PEO 처리후 시편은 SEM, EDS, XRD를 이용하여 표면 특성 평가를 실시하였다. PEO코팅층의 캐비테이션 특성 평가는 초음파 진동식 캐비테이션 발생 장치를 이용하였으며, 캐비테이션 실험 후 시간에 따른 표면 거칠기의 변화 거동을 분석하였다.

  • PDF

Effect of Samarium Addition on Microstructure and Thermal Conductivity of Al-Si-Cu Aluminum Alloy (Sm 첨가에 따른 Al-Si-Cu 알루미늄 합금의 미세조직 및 열전도도 변화)

  • Choi, Jin-Ju;Kang, Yubin;Im, Byoungyong;Lee, Chan-Gi;Kim, Hangoo;Park, Kwang Hoon;Kim, Dae-Guen
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.31-37
    • /
    • 2020
  • In this study, the effects of Sm addition (0, 0.05, 0.2, 0.5 wt%) on the microstructure, hardness, and electrical and thermal conductivity of Al-11Si-1.5Cu aluminum alloy were investigated. As a result of Sm addition, increment in the amount of α-Al and refinement of primary Si from 70 to 10 ㎛ were observed due to eutectic temperature depression. On the other hand, Sm was less effective at refining eutectic Si because of insufficient addition. The phase analysis results indicated that Sm-rich intermetallic phases such as Al-Fe-Mg-Si and Al-Si-Cu formed and led to decrements in the amount of primary Si and eutectic Si. These microstructure changes affected not only the hardness but also the electrical and thermal conductivity. When 0.5 wt% Sm was added to the alloy, hardness increased from 84.4 to 91.3 Hv, and electric conductivity increased from 15.14 to 16.97 MS/m. Thermal conductivity greatly increased from 133 to 157 W/m·K.