• Title/Summary/Keyword: Al-Si-Fe system

Search Result 112, Processing Time 0.026 seconds

Analysis of Sediment Reduction Efficiency with Net Type Sediment Settling Pond at Highland Agricultural Region (그물망침사지를 이용한 고랭지밭 흙탕물 저감효과 연구)

  • Hyun, Geun-Woo;Park, Han-Kyu;Lee, Yong-Sik;Lee, Suk-Jong;Park, Jeong-Hee;Jun, Sang Ho;Choi, Jaewan;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.215-224
    • /
    • 2010
  • This study was carried out to estimate effects of sediment reduction with net type sediment settling pond at highland agricultural areas. Flow and sediment monitoring system with rainfall gauge were installed at the study area for real-time monitoring and analysis. It was found that amount and intensity of rainfall events strongly affect sediment yield from the study area. With net type sediment settling pond, it was expected that approximately 61% of sediment could be removed. The correlation between heavy metals and SS were analyzed in this study. $R^2$ values were 0.644, 0.876, 0.945, and 0.928 for Fe, Mn, Al, and Si, respectively. This results indicate that heavy metals also could be removed with net type sediment settling pond. As shown in this study, the sediment settling pond will be an efficient sediment reduction facility at highland agricultural areas. For maximum reduction efficiencies of sediment and other pollutants at agricultural fields, simplified sediment settling pond should be designed and implemented.

Chemical Properties of Indoor Individual Particles Collected at the Daily Behavior Spaces of a Factory Worker

  • Ma, Chang-Jin;Kang, Gong-Unn;Sakai, Takuro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.122-130
    • /
    • 2017
  • The main purpose of the study was to clarify the properties of individual particles collected at each behavior space of a factory worker. The samplings of size-segregated ($PM_{2.1-1.1}$ and $PM_{4.7-3.3}$) indoor particles were conducted at three different behavior spaces of a factory worker who is engaged in an auto parts manufacturing plant (i.e., his home, his work place in factory, and his favorite restaurant). Elemental specification (i.e., relative elemental content and distribution in and/or on individual particles) was performed by a micro-PIXE system. Every element detected from the coarse particulate matters of home was classified into three groups, i.e., a group of high net-counts (Na, Al, and Si), a group of intermediate net-counts (Mg, S, Cl, K, and Ca), and a group of minor trace elements (P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb). The results of EF for $PM_{4.7-3.3}$ in home indicated that several heavy metals were generated from the sources within the house itself. An exceptional feature shown in the individual particles in workplace is that Cr, Mn, and Co were clearly detected in both fine and coarse particles. Cluster analysis suggested that the individual coarse particles ($PM_{4.7-3.3}$) collected at the indoor of factory were chemically heterogeneous and they modified with sea-salt, mineral, and artificially derived elements. The principal components in individual coarse particles collected at restaurant were sea-salt and mineral without mixing with harmful trace elements like chromium and manganese. Compared to the indoor fine particles of home and restaurant, many elements, especially, Cl, Na, Cr, Mn, Pb, and Zn showed overwhelmingly high net-counts in those of factory.

The Physio-Chemical Characteristics of Aerosol in Urban Area During Snowfall (강설시 도심지역 에어러솔의 물리.화학적 특성)

  • 김민수;이동인;유철환
    • Journal of Environmental Science International
    • /
    • v.10 no.3
    • /
    • pp.201-208
    • /
    • 2001
  • To investigate the physio-chemical components and properties of aerosol particles in urban area sampling of aerosol particles was carried out in the campus of Hokkaido University, Sapporo, Japan, during snowfall. Aerosol particles were collected on millipore filter papers using a low volume air sampler. Their shapes, sizes and chemical components were analyzed by a SEM(Scanning Electron Microscope) and an EDX(Energy Dispersive X-ray). As a results, ice crystals of dendrite and column types were predominantly shown at mature and developing stage of snowfall intensity. The denerite and sector plate types of ice crystals were mainly originated from the sea but column types were come from soil. Scavenging effect by snowfall was greatly also shown at dendrite type ice crystals that embryo was fully developd. Al, Si elements were shown at high frequencies as compared with others. Na, Cl components were especially shown at high frequencies under the sea-breeze wind during snowfall. Anthropogenic aerosol particles had shown with irregular shapes and sizes, relatively. Mainly 3-7$\mu$m aerosol particles were abundant and coarse particles also could be seen during snowfall. Ca, Zn, Fe components mainly caused by spike tires from vehicles in winter season were dominant before snowfall, however the element S mainly caused by human activity was rich after snowfall. The pH values of snow in Sapporo city were higher than those at coastal area. The concentration of chemical components in aerosol particles was also affected by surface winds. Aerosol particles in urban area, Sapporo were mainly affected by human activities like vehicles and combustion with wind system. And their types were related with snowfall intensity.

  • PDF

Development of Source Profiles for Asbestos and Non-asbestos Fibers by SEM/EDX (SEM/EDX를 이용한 석면 및 비석명의 오염원분류표 개발)

  • Choi, Young-A;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.718-726
    • /
    • 2007
  • There are many varieties of asbestos: chrysotile, crocidolite, amosite, tremolite, actinolite, and anthophylite. These are widely used in construction materials, brake lining, textile, and so on. Even though non-asbestos fibers such as glassfiber and rockwool have manufactured because asbestos causes asbestosis, lung cancer, mesothelioma, etc., some bad effects of non-asbestos have been also reported. PCM (phase contrast microscopy) and PLM (polarized light microscopy) have been used to qualitatively analyze asbestoses. These techniques have serious drawbacks when identifying and separating various asbestoses. Recently scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX) has been known as an useful tool to analyze airborne particle since it provides physical and chemical information simultaneously. The purpose of the study was to classify both asbestos and non-asbestos fibers and finally to develop their source profiles by using the SEM/EDX. The source profiles characterized by 6 different types of asbestos fibers and 2 types of non-asbestos fibers had been developed by analyzing a total of 380 fibers. Analytical parameters used in this study were length, width, aspect ratio, and shape as physical information, and Na, Mg, Al, Si, K, Ca, Cr, Mn, Fe, and Cu as chemical information. All the parameters were intensively reviewed.

A Study on the Manufacture of Aluminum Tie-Rod End by Casting/Forging Process (주조/단조 기술을 이용한 알루미늄 타이로드 엔드 제조에 관한 연구)

  • Kim, Hyo-Ryang;Seo, Myung-Kyu;You, Min-Su;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.180-185
    • /
    • 2002
  • Aluminum casting/forging process is used to produce an aluminum tie-rod end for the steering system of automobiles. Firstly, casting experiments were carried out to get a good preform for forging the tie-rod end. In the casting experiment, the effects of additives, Ti+B, Zr, Sr, and Mg, on the mechanical properties and the microstructure of a cast preform were investigated. And a finite element analysis was performed to determine an optimal configuration of the cast preform. Lastly, a forging experiment was carried out to make the final product of aluminum tie-rod end by using the above cast preform. In the casting experiments, when 0.2% Ti+B and 0.25% Zr were simultaneously added into molten Al-Si alloy, the highest values of tensile strength and elongation of the cast preform were obtained. When 0.04% Sr were added into the molten aluminum alloy, the finest silicon-structure was observed in the cast preform. The highest hardness was obtained when 0.2% Mg was added. In the forging experiment, It was confirmed that the optimal configuration of a cast preform predicted by FE analysis was very useful. The hardness of a cast/forged product using designed preform was superior to that of required specification.

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

A Study on the Fundamental Properties of Mortar Mixed with Converter Slag and Ferronickel Slag (전로슬래그 및 페로니켈슬래그를 혼입한 모르타르의 기초물성 연구)

  • Kim, Ji-Seok;Park, Eon-Sang;Ann, Ki-Yong;Cho, Won-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.152-160
    • /
    • 2021
  • Converter steel slag(BOF slag) is a vast amount of solid waste generated in the steelmaking process which has very low utilization rate in Korea. Due to the presence of free CaO which can derive bad volume stability in BOF slag, it usually land filled. For recycling BOF and identify its applicability as fine aggregate, this study investigates the fundamental characteristics of mortar with cement replaced ferronickel slag(FNS), which has the potential to be used as a binder. The results suggest that the mineral phases of BOF slag mainly include larnite(CaSiO4), mayenite(Ca12Al14O33) and wuestite(FeO) while olivine crystallines are shown in FNS. The results of flow and setting time reveals that the flowability and process of hardening increased when the amount of FNS and BOF slag incorporated was increased. The length change shows that the amount of change in the length of the mortar was almost constant regardless of mix proportion while compressive strength was reduced. Micro structure test results revealed that FNS or/and BOF slag mix took a long time to react in the cement matrix to form a complete hydration products. To achieve the efficient utilization of B OF slag as construction materials, proper replacement rate is necessary.

A Comparative Study on PM10 Source Contributions in a Seoul Metropolitan Subway Station Before/After Installing Platform Screen Doors (서울시 지하철 승강장의 스크린도어 설치 전·후 PM10 오염원의 기여도 비교 연구)

  • Lee, Tae-Jung;Jeon, Jae-Sik;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.543-553
    • /
    • 2010
  • Almost five million citizens a day are using subways as a means of traffic communication in the Seoul metropolitan. As the subway system is typically a closed environment, indoor air pollution problems frequently occurs and passengers complain of mal-health impact. Especially $PM_{10}$ is well known as one of the major pollutants in subway indoor environments. The purpose of this study was to compare the indoor air quality in terms of $PM_{10}$ and to quantitatively compare its source contributions in a Seoul subway platform before and after installing platform screen doors (PSD). $PM_{10}$ samples were collected on the J station platform of Subway Line 7 in Seoul metropolitan area from Jun. 12, 2008 to Jan. 12, 2009. The samples collected on membrane filters using $PM_{10}$ mini-volume portable samplers were then analyzed for trace metals and soluble ions. A total of 18 chemical species (Ba, Mn, Cr, Cd, Si, Fe, Ni, Al, Cu, Pb, Ti, $Na^+$, $NH_4^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, and ${SO_4}^{2-}$) were analyzed by using an ICP-AES and an IC after performing proper pre-treatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the source of particulate matters. $PM_{10}$ for the station was characterized by three sources such as ferrous related source, soil and road dust related source, and fine secondary aerosol source. After installing PSD, the average $PM_{10}$ concentration was decreased by 20.5% during the study periods. Especially the contribution of the ferrous related source emitted during train service in a tunnel route was decreased from 59.1% to 43.8% since both platform and tunnel areas were completely blocked by screen doors. However, the contribution of the fine secondary aerosol source emitted from various outside combustion activities was increased from 14.8% to 29.9% presumably due to ill-managed ventilation system and confined platform space.

Hydrogeochemical characteristics of urban groundwater in Seoul

  • Lee, Ju-Hee;Yun, Seong-Taek;Kwon, Jang-Soon;Kim, Dong-Seung;Park, Seong-Sook
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.472-472
    • /
    • 2004
  • Numerous studies on urban groundwater have been carried out in many other countries. Urban groundwater shows a unique hydrologic system because of complex urban characteristics such as road pavement, sewers and public water supply systems. These urban facilities may change the characteristics of groundwater recharge but contaminate its quality as well. There have been several researches on urban groundwater in Seoul. Seoul has been industrialized very rapidly so that the city has large population. The recent population in Seoul amounts to more than ten millions, corresponding to a very high density of about 17, 000 people/km$^2$. Therefore, many factors affect the groundwater quality and quantity in Seoul. Nowadays, groundwater in Seoul is being extracted for construction, industrial use, and drinking and so on. There are 15, 714 wells in Seoul and its annual usage is 41, 425, 977m$^3$(in 2001). Therefore, systematic studies are needed to properly manage and use the groundwater in Seoul. The purposes of this study in progress are to identify geochemical characteristics of groundwater in Seoul and to determine the extent of groundwater contamination and its relationship with urban characteristics. For this study, groundwater was sampled from more than 400 preexisting wells that were randomly selected throughout the Seoul area. For all samples, major cations together with Si, Al, Fe, Pb, Hg For 200 samples among them, TCE, PCE, BTEX were also analyzed by GC. Our study shows that groundwater types of Seoul are distributed broadly from Ca-HCO$_3$ type to Ca-Cl+NO$_3$ type. The latter type indicates anthropogenic contamination. Among cations, Ca is generally high in most samples. In some samples, Na and K are dominant. The dominant anions change widely from HCO$_3$ to Cl+NO$_3$. The anion composition is considered to effectively indicate the contribution of distinct anthropogenic sources. In addition, major ions are positively proportional to total dissolved solid (TDS) except K and NO$_3$. Thus, we consider that TDS may be used as an effective indicator of the extent of pollution. However, the increase of TDS may result from increased water-rock interaction. To determine the extent of groundwater contamination, it is needed to figure out the baseline water quality in Seoul. Furthermore, detailed geochemical studies are required to find out pollution sources and their corresponding hydrochemical parameters.

  • PDF

Identification of PM10 Chemical Characteristics and Sources and Estimation of their Contributions in a Seoul Metropolitan Subway Station (서울시 지하역사에서 PM10의 화학적 특성과 오염원의 확인 및 기여도 추정)

  • Park, Seul-Ba-Sen-Na;Lee, Tae-Jung;Ko, Hyun-Ki;Bae, Sung-Joon;Kim, Shin-Do;Park, Duckshin;Sohn, Jong-Ryeul;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.74-85
    • /
    • 2013
  • Since the underground transportation system is a closed environment, indoor air quality problems may seriously affect many passengers' health. The purpose of this study was to understand $PM_{10}$ characteristics in the underground air environment and further to quantitatively estimate $PM_{10}$ source contributions in a Seoul Metropolitan subway station. The $PM_{10}$ was intensively collected on various filters with $PM_{10}$ aerosol samplers to obtain sufficient samples for its chemical analysis. Sampling was carried out in the M station on the Line-4 from April 21 to 28, July 13 to 21, and October 11 to 19 in the year of 2010 and January 11 to 17 in the year of 2011. The aerosol filter samples were then analyzed for metals, water soluble ions, and carbon components. The 29 chemical species (OC1, OC2, OC3, OC4, CC, PC, EC, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V, Zn, $Cl^-$, $NO_3{^-}$, $SO_4{^{2-}}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were analyzed by using ICP-AES, IC, and TOR after proper pretreatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the $PM_{10}$ sources and then six sources such as biomass burning, outdoor, vehicle, soil and road dust, secondary aerosol, ferrous, and brakewear related source were classified. The contributions rate of their sources in tunnel are 4.0%, 5.8%, 1.6%, 17.9%, 13.8% and 56.9% in order.