• Title/Summary/Keyword: Al-Si order-disorder

Search Result 6, Processing Time 0.024 seconds

Theory of NMR Spectoscopy and Its Application in Geoenvironmental Sciences (NMR 분광법의 원리와 지구환경과학에의 응용)

  • 김영규
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.233-245
    • /
    • 2001
  • With the advent of super-conducting magnet, NMR spectroscopy becomes a very important tool in geology as well as in chemistry. $^{29}Si$ and $^{27}Al$ which are the main components of minerals and contain structural informations, are useful major targets for the NMR study in geology, but some other elements including alkali cations such as $^{23}Na$ are also one of them. NMR can be applied to many different fields. For example, it can be applied to study smaller range of structure (in molecular level) than XRD and TEM. NMR provides us with structural informations such as order-disorder in Al and Si distribution, oxygen coordination number, and distribution of other cations. Another important information that we can obtain from NMR is not only the static structural informations, but also the molecular dynamics. This dynamic informations of molecules also enable us to figure out the frequency of molecular motion and activation energy. Structure of amorphous minerals and chemistry and structure of natural organic materials are also studied by NMR.

  • PDF

A Study on Microstructures and Chemistry of Anorthoclase Using Electron Microscopy (전자현미경을 이용한 Anorthoclase의 미세구조 및 화학 연구)

  • 이영부;김윤중;이석훈;이정후
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.233-243
    • /
    • 2003
  • Microstructures and chemistry of anorthoclase, a high-temperature phase of alkali feldspars, were studied using EPMA and TEM. BSE images of anorthoclase displayed mixtures of Na-rich areas and K-rich areas forming lamella of various sizes. EPMA analysis indicated that the Na-rich area is composed of Ab: 81%, Or: 3% and An: 11% in average, while the K-rich area is composed of Ab: 45%, Or: 44% and An: 11 % in average. TEM analysis revealed albite with Albite twins in the Na-rich area, contrasting to mixtures of albite with fine Albite twins and orthoclase without twins, forming regular lamella of about 100 nm sizes, in the K-rich area. The [001] electron diffraction pattern of the K-rich area also indicated coexistence of the two phases. While streaking parallel to the (010)$^{*}$ direction appeared only in albite due to the twin structure, streaking parallel to the $(100)^{ *}$ direction appeared both in albite and orthoclase, probably due to strain on the interface as well as order-disorder phenomena of Al and Si. It is suggested that the reverse orientation of albite and orthoclase is caused by pole switching to reduce strain on their interfaces. Based on these observations and analyses, the mineral studied is identified as lower-temperature cryptoperthite rather than high-temperature anorthoclase, which has a midium degree of Al-Si ordering and $400^{\circ}C$$600^{\circ}C$ of estimated temperatures for the microstructure formation.

Elastic Behavior of Zeolite Mesolite under Hydrostatic Pressure (제올라이트 메소라이트의 수압 하 탄성특성)

  • Lee, Yong-Jae;Lee, Yong-Moon;Seoung, Dong-Hoon;Jang, Young-Nam
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.509-512
    • /
    • 2009
  • Powder diffraction patterns of the zeolite mesolite ($Na_{5.33}Ca_{5.33}Al_{16}Si_{24}O_{80}{\cdot}21.33H_2O$), with a natrolite framework topology were measured as a function of pressure up to 5.0 GPa using a diamond-anvil cell and a $200{\mu}m$-focused monochromatic synchrotron X-ray. Under the hydrostatic conditions mediated by pore-penetrating alcohol and water mixture, the elastic behavior of mesolite is characterized by continuous volume expansion between ca. 0.5 and 1.5 GPa, which results from expansion in the ab-plane and contraction along the c-axis. Subsequent to this anomalous behavior, changes in the powder diffraction patterns suggest possible reentrant order-disorder transition. The ordered layers of sodium- and calcium-containing channels in a 1:2 ratio along the b-axis attribute to the $3b_{natrolite}$ cell below 1.5 GPa. When the volume expansion is completed above 1.5 GPa, such characteristic ordering reflections disappear and the $b_{natrolite}$ cell persists with marginal volume contraction up to ca. 2.5 GPa. Further increase in pressure leads to progressive volume contraction and appears to generate another set of superlattice reflections in the $3c_{natrolite}$ cell. This suggests that mesolite in the pressure-induced hydration state experiences order-disorder-order transition involving the motions of sodium and calcium cations either through cross-channel diffusion or within the respective channels.

Fine-scale Mineral Association and Crystal Structure Refinement of Spotted Cordierite from Northern Ogcheon Metamorphic Belt (북부 옥천변성대에서 산출되는 반점상 근청석의 미시적 공생관계 및 결정구조 해석)

  • 노진환;최진범;김건영
    • Journal of the Mineralogical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.55-65
    • /
    • 1999
  • Spotted cordierite occurs as the result of intrusion of Wolaksan Granite of Cretaceous age in the northern part of the Ogcheon Metamorphic Belt, forming a contact metamorphic zoning in accordance with the distance from the granite body: a cordierite-muscovite-biotite-quartz assemblage and the higher-temperature cordierite-biotite-quartz-(cummingtonite). These quartz-ubiquitous mineral assemblages identified in the cordierite spot seem to reflect Al-deficient condition of the protolith. TEM observations of textural relations between the cordierite and mica within the cordierite spot clearly reflect that cordierite was formed at the expense of micaceous matrix. A structure refinement of the poikiloblastic cordierite was performed by the Rietveld refinement method. Unit cell of the cordierite was determined to be as follows : lower-temperature type: a=17.1480(9)${\AA}$, b=9.7743(6)${\AA}$, c=9.3184(5)${\AA}$, V=1561.9(4)${\AA}$3, higher-temperature type: a=17.136(2)${\AA}$, b=9.751(1)${\AA}$, c=9.322(1)${\AA}$, V=1557.7(4)${\AA}$3. They show a remarkable difference in the unit cell dimension. The refinement results indicate that structural sites of lower-temperature cordierite are wholly occupied by appropriating ions. Compared to this, tetrahedral sites of the higher-temperature type exhibit an order/disorder ranging about 5-8% as the result of substitution between Si4+ and Al3+, except for T26 site occupied wholly by Al3+. These structural differences seem to be related to the formation temperatures of both cordierite types.

  • PDF

Derivation of a benchmark dose lower bound of lead for attention deficit hyperactivity disorder using a longitudinal data set (경시적 자료의 주의력 결핍 과잉행동 장애를 종점으로 한 납의 벤치마크 용량 하한 도출)

  • Lee, Juhyung;Kim, Si Yeon;Ha, Mina;Kwon, Hojang;Kim, Byung Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1295-1309
    • /
    • 2016
  • This paper is to reproduce the result of Kim et al. (2014) by deriving a benchmark dose lower bound (BMDL) of lead based on the 2005 cohort data set of Children's Health and Environmental Research (CHEER) data set. The ADHD rating scales in the 2005 cohort were not consistent along the three follow-ups since two different ADHD rating scales were used in the cohort. We first unified the ADHD rating scales in the 2005 cohort by deriving a conversion formula using a penalized linear spline. We then constructed two linear mixed models for the 2005 cohort which reflected the longitudinal characteristics of the data set. The first model introduced the random intercept and the random slope terms and the second model assumed the first order autoregressive structure of the error term. Using these two models, we derived the BMDLs of lead and reconfirmed the "regression to the mean" nature of the ADHD score discovered by Kim et al. (2014). We also noticed that there was a definite difference between the sampling distributions of the two cohorts. As a result, taking this difference into account, we were able to obtain the consistent result with Kim et al. (2014).

Plasma Etching Characteristics of Sapphire Substrate using $BCl_3$-based Inductively Coupled Plasma ($BCl_3$ 계열 유도결합 플라즈마를 이용한 사파이어 기판의 식각 특성)

  • Kim, Dong-Pyo;Woo, Jong-Chang;Um, Doo-Seng;Yang, Xue;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.363-363
    • /
    • 2008
  • The development of dry etching process for sapphire wafer with plasma has been key issues for the opto-electric devices. The challenges are increasing control and obtaining low plasma induced-damage because an unwanted scattering of radiation is caused by the spatial disorder of pattern and variation of surface roughness. The plasma-induced damages during plasma etching process can be classified as impurity contamination of residual etch products or bonding disruption in lattice due to charged particle bombardment. Therefor, fine pattern technology with low damaged etching process and high etch rate are urgently needed. Until now, there are a lot of reports on the etching of sapphire wafer with using $Cl_2$/Ar, $BCl_3$/Ar, HBr/Ar and so on [1]. However, the etch behavior of sapphire wafer have investigated with variation of only one parameter while other parameters are fixed. In this study, we investigated the effect of pressure and other parameters on the etch rate and the selectivity. We selected $BCl_3$ as an etch ant because $BCl_3$ plasmas are widely used in etching process of oxide materials. In plasma, the $BCl_3$ molecule can be dissociated into B radical, $B^+$ ion, Cl radical and $Cl^+$ ion. However, the $BCl_3$ molecule can be dissociated into B radical or $B^+$ ion easier than Cl radical or $Cl^+$ ion. First, we evaluated the etch behaviors of sapphire wafer in $BCl_3$/additive gases (Ar, $N_2,Cl_2$) gases. The behavior of etch rate of sapphire substrate was monitored as a function of additive gas ratio to $BCl_3$ based plasma, total flow rate, r.f. power, d.c. bias under different pressures of 5 mTorr, 10 mTorr, 20 mTorr and 30 mTorr. The etch rates of sapphire wafer, $SiO_2$ and PR were measured with using alpha step surface profiler. In order to understand the changes of radicals, volume density of Cl, B radical and BCl molecule were investigated with optical emission spectroscopy (OES). The chemical states of $Al_2O_3$ thin films were studied with energy dispersive X-ray (EDX) and depth profile anlysis of auger electron spectroscopy (AES). The enhancement of sapphire substrate can be explained by the reactive ion etching mechanism with the competition of the formation of volatile $AlCl_3$, $Al_2Cl_6$ or $BOCl_3$ and the sputter effect by energetic ions.

  • PDF