A Study on Microstructures and Chemistry of Anorthoclase Using Electron Microscopy

전자현미경을 이용한 Anorthoclase의 미세구조 및 화학 연구

  • 이영부 (한국기초과학지원연구원) ;
  • 김윤중 (한국기초과학지원연구원) ;
  • 이석훈 (한국기초과학지원연구원) ;
  • 이정후 (전북대학교 지구환경과학과)
  • Published : 2003.09.01

Abstract

Microstructures and chemistry of anorthoclase, a high-temperature phase of alkali feldspars, were studied using EPMA and TEM. BSE images of anorthoclase displayed mixtures of Na-rich areas and K-rich areas forming lamella of various sizes. EPMA analysis indicated that the Na-rich area is composed of Ab: 81%, Or: 3% and An: 11% in average, while the K-rich area is composed of Ab: 45%, Or: 44% and An: 11 % in average. TEM analysis revealed albite with Albite twins in the Na-rich area, contrasting to mixtures of albite with fine Albite twins and orthoclase without twins, forming regular lamella of about 100 nm sizes, in the K-rich area. The [001] electron diffraction pattern of the K-rich area also indicated coexistence of the two phases. While streaking parallel to the (010)$^{*}$ direction appeared only in albite due to the twin structure, streaking parallel to the $(100)^{ *}$ direction appeared both in albite and orthoclase, probably due to strain on the interface as well as order-disorder phenomena of Al and Si. It is suggested that the reverse orientation of albite and orthoclase is caused by pole switching to reduce strain on their interfaces. Based on these observations and analyses, the mineral studied is identified as lower-temperature cryptoperthite rather than high-temperature anorthoclase, which has a midium degree of Al-Si ordering and $400^{\circ}C$$600^{\circ}C$ of estimated temperatures for the microstructure formation.

알칼리 장석 중 고온 상인 anorthoclase의 미세구조 및 화학을 EPMA 및 TEM을 이용하여 분석하였다. Anorthoclase는 BSE image 상에서 Na-rich 지역과 K-rich 지역이 다양한 크기의 lamella를 형성하며 혼재되어 있으며, EPMA 분석 결과 Na-rich 지역은 평균 조성이 Ab: 81%, Or: 3%, An: 12%이며 K-rich 지역은 평균 조성이 Ab: 45%, Or: 44%, An: 11%로 나타났다. TEM 관찰 결과 Na-rich 지역은 앨바이트(albite) 쌍정 구조가 잘 발달한 반면 K-rich 지역은 다시 미세한 앨바이트 쌍정이 발달한 앨바이트와 쌍정이 없는 orthoclase가 약 100 nm의 규칙적인 lamellae 형태를 이루며 서로 섞여 있음이 드러났다 K-rich 지역의 [001] 전자회절도형도 두 상이 공존함을 보이는데, 앨바이트 회절점은 쌍정 구조에 의하여 $(010) ^{*}$ / 방향으로 streaking이 나타난다. 이에 비하여 $(100)^{*}$ 방향으로는 앨바이트 회절점과 orthoclase 회절점이 모두 streaking을 가지는데 이는 Al과 Si의 배열-비배열 현상과 두 상의 계면 간에 나타나는 왜력(strain)에 기인한 것으로 여겨진다. 앨바이트와 orthoclase의 방향이 서로 반대로 나타나는 이유는 두 상의 계면 간의 왜력을 줄이기 위한 일종의 pole switching의 결과로 여겨진다. 위의 결과를 종합해 볼 때 연구된 광물은 중간 단계의 Al-Si 비배열 상태를 가지며 미세구조의 생성 온도가 $400^{\circ}C$$600^{\circ}C$로 추정되기 때문에 고온 상인 anorthoclase라기보다는 보다 저온 상인 cryptoperthite라 할 수 있다

Keywords

References

  1. Aizu, K. (1970) Possible species of ferromagnetic, ferroelectric and ferroelastic crystals, Phys. Rev. B2, 754-772.
  2. Brown, W.L. and Persons, I. (1984) Exsolution and coarsening mechanism and kinetics in an ordered cryptoperthite series, Contrib. Mineral. Petrol., 96, 3-18.
  3. Brown, W.L. and Willaime, C. (1974) An explanation of exsolution orientations and residual strain in cryptoperthites: In, MacKenzie, W.S. and Zussman, J. (Eds.) The feldspars, Manchester Univ. Press: Manchester, 440-459.
  4. Deer, W.A., Howie, R.A., and Zussman, J. (2001) Rock-Forming Minerals, Vol. 4A, 2nd eds., Framework Silicates: Feldspars, The Geological Society, London, 972pp.
  5. Kim, Y-J. and Lee, Y-B. (2003) XRD and TEM investigation of structures and phase transformations in albite, J. Mineral. Soc. Korea, 16, 91-106.
  6. Kroll, H. (1971) Determination of Al, Si distribution in alkali feldspars from x-ray powder data, N. Jahrb. Mineral. Monatsh., 91-94.
  7. Kroll, H. and Ribbe, P.H. (1987) Determining (Al, Si) distribution and strain in alkali feldspar using lattice parameter and diffraction peaks position, A review, Am. Mineral, 72, 791-506.
  8. Lee, Y-B. and Kim Y-J. (1999) An investigation of lattice parameter measurement of inorganic crystals by electron diffraction patterns, J. Korean Society of Electron Microscopy, 29, 75-81.
  9. Martin, R.F. (1974) Controls of ordering and subsoildus phase relation in the alkali feldspar: In, MacKenzie, W.S. and Zussman, J. (Eds.) The feldspars, Manchester Univ. Press: Manchester, 313-336.
  10. Parsons, I. (ed.) (1994) Feldspars and Their Reactions, Kluwer Academic Publishers, 650pp.
  11. Ribbe P.H. (ed.) (1983) Feldspar Mineralogy, 2nd ed., Review in Mineralogy, 2, Mineral. Soc. Am, 362pp.
  12. Salje, E.K.H. (1990) Phase transitions in Ferroelastic and Co-elastic Crystals, Cambridge Univ. Press, 281pp.
  13. Sipling, P.J. and Yund, R.A. (1976) Experimental determination of the coherent solvus for sanidinehigh albite, Am. Mineral, 61, 897-906.
  14. Smith, J.V. (1974) Feldspar Minerals. I. Crystal structure and Physical Properties, Springer-Verlag: Heidlberg, 627pp.
  15. Smith, J.V. and Brown, W.L. (1988) Feldspar Minerals, Springer-Verlag, 828pp.
  16. Stewart, D.B. and Wright, T.L. (1974) Al/Si order and symmetry of natural alkali feldspars, and the relationship of stained cell parameter to bulk composition, Bull. Soc. franc Mineral Cristallogr, 97, 356-377.
  17. Thompson, J.B. and Waldbaum, D.R. (1969) Mixing properties of sanidine crystalline solutions. III. Calculations based on two-phase data, Am. Mineral, 54, 811-838.
  18. Xu, H., Veblen D.R., Buseck P., and Ramakrishna B.L. (2000) TEM and SFM of exsolution and twinning in an alkali feldspar, Am. Mineral, 85, 509-513.
  19. Wadhawan, V.K. (1982) Ferroelasticity and related properties of crystals, Phase Transitions, 3, 3-103.
  20. Willaime, C., Brown, W.L., and Gandais, M. (1976) Physical aspects of exsolution in natural alkali feldspars: In, Wenk, H.R. (Eds.) Electron Microscopy in Mineralogy, Springer Berlin, 248-257.