• Title/Summary/Keyword: Al-Mn alloy

Search Result 179, Processing Time 0.029 seconds

Self-formation of Diffusion Barrier at the Interface between Cu-V Alloy and $SiO_2$

  • Mun, Dae-Yong;Park, Jae-Hyeong;Han, Dong-Seok;Gang, Yu-Jin;Seo, Jin-Gyo;Yun, Don-Gyu;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.256-256
    • /
    • 2012
  • Cu가 기존 배선물질인 Al을 대체함에 따라 resistance-capacitance delay와 electromigration (EM) 등의 문제들이 어느 정도 해결되었다. 그러나 지속적인 배선 폭의 감소로 배선의 저항 증가, EM 현상 강화 그리고 stability 악화 등의 문제가 지속적으로 야기되고 있다. 이를 해결하기 위한 방법으로 Cu alloy seed layer를 이용한 barrier 자가형성 공정에 대한 연구를 진행하였다. 이 공정은 Cu 합금을 seed layer로 사용하여 도금을 한 후 열처리를 통해 $SiO_2$와의 계면에서 barrier를 자가 형성시키는 공정이다. 이 공정은 매우 균일하고 얇은 barrier를 형성할 수 있고 별도의 barrier와 glue layer를 형성하지 않아 seed layer를 위한 공간을 추가로 확보할 수 있는 장점을 가지고 있다. 또한, via bottom에 barrier가 형성되지 않아 배선 전체 저항을 급격히 낮출 수 있다. 합금 물질로는 초기 Al이나 Mg에 대한 연구가 진행되었으나, 낮은 oxide formation energy로 인해 SiO2에 과도한 손상을 주는 문제점이 제기되었다. 최근 Mn을 합금 물질로 사용한 안정적인 barrier 형성 공정이 보고 되고 있다. 하지만, barrier 형성을 하기 위해 300도 이상의 열처리 온도가 필요하고 열처리 시간 또한 긴 단점이 있다. 본 실험에서는 co-sputtering system을 사용하여 Cu-V 합금을 형성하였고, barrier를 자가 형성을 위해 300도에서 500도까지 열처리 온도를 변화시키며 1시간 동안 열처리를 실시하였다. Cu-V 공정 조건 확립을 위해 AFM, XRD, 4-point probe system을 이용하여 표면 거칠기, 결정성과 비저항을 평가하였다. Cu-V 박막 내 V의 함량은 V target의 plasma power density를 변화시켜 조절 하였으며 XPS를 통해 분석하였다. 열처리 후 시편의 단면을 TEM으로 분석하여 Cu-V 박막과 $SiO_2$ 사이에 interlayer가 형성된 것을 확인 하였으며 EDS를 이용한 element mapping을 통해 Cu-V 내 V의 거동과 interlayer의 성분을 확인하였다. PVD Cu-V 박막은 기판 온도에 큰 영향을 받았고, 200도 이상에서는 Cu의 높은 표면에너지에 의한 agglomeration 현상으로 거친 표면을 가지는 박막이 형성되었다. 7.61 at.%의 V함량을 가지는 Cu-V 박막을 300도에서 1시간 열처리 한 결과 4.5 nm의 V based oxide interlayer가 형성된 것을 확인하였다. 열처리에 의해 Cu-V 박막 내 V은 $SiO_2$와의 계면과 박막 표면으로 확산하며 oxide를 형성했으며 Cu-V 박막 내 V 함량은 줄어들었다. 300, 400, 500도에서 열처리 한 결과 동일 조성과 열처리 온도에서 Cu-Mn에 의해 형성된 interlayer의 두께 보다 두껍게 성장했다. 이는 V의 oxide formation energy가 Mn 보다 작으므로 SiO2와의 계면에서 산화막 형성이 쉽기 때문으로 판단된다. 또한, $V^{+5}$이온 반경이 $Mn^{+2}$이온 반경보다 작아 oxide 내부에서 확산이 용이하며 oxide 박막 내에 여기되는 전기장이 더 큰 산화수를 가지는 V의 경우 더 크기 때문으로 판단된다.

  • PDF

Fabrication of Ferromagnetic Mn-AI Alloy N anoparticles using a Plasma Arc-discharge Process (플라즈마 아크 방전법에 의한 강자성 Mn-Al 합금나노입자의 합성)

  • Lee, Jung-Goo;Li, Pu;Dong, Xing Long;Choi, Chul-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • Ferromagnetic Mn-Al nanoparticles were prepared using a plasma arc discharge method. The influence of the process parameters on the vaporization rate, composition, particle size, and magnetic properties of the as-produced nanoparticles was investigated. The Mn content was found to be higher in the nanoparticles than in the corresponding mother materials, although the difference diminished with the reaction time. As the $H_2$ content in the reaction gas increased, both the vaporization rate and the particle size increased. With 30 at.% Mn, the average particle diameter was 35.2 nm under a pure Ar gas condition, whereas it was 95.4 nm at a Ar:$H_2$ ratio of 60:40. With the addition of a small amount of carbon, ${\varepsilon}$-phase nanoparticles were successfully synthesized. After a heat treatment in a vacuum for 30 min at $500^{\circ}C$, the nonmagnetic ${\varepsilon}$-phase was transformed into the ferromagnetic ${\tau}$-phase, and a very high coercivity of nearly 5.6 kOe was achieved.

Characterization of Cold Metal Transfer Welding Coated Steel (도금 강판 CMT 용접부위의 재료특성평가)

  • Song, Hyun Soo;Choi, Bo Sung;Yun, Jondo;Park, Seung Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.891-896
    • /
    • 2015
  • In order to protect the environment, using light material is becoming more and more attractive within the automobile industry. Aluminum alloys are the best and lightest metallic materials used in the automotive, electron, and aerospace industries. Al alloy and SGARC were joined by cold metal transfer (CMT) welding, using AlSiMn4 as a filler. Results showed that dissimilar metals from the Al 6000 series/SGARC could be successfully joined by CMT under proper processing parameters. The micro-hardness value of 125Hv was obtained at an interface.

Corrosion Behavior of Si,Zn and Mn-doped Hydroxyapatite on the PEO-treated Surface

  • Park, Min-Gyu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.78-78
    • /
    • 2017
  • Pure Titanium and alloy have been widely used in dental implants and orthopedics due to their excellent mechanical properties, biocompatibility and corrosion resistance. However, due to the biologically inactive nature of Ti metal implants, it cannot bind to the living bone immediately after transplantation into the body. In order to improve the bone bonding ability of titanium implants, many attempts have been made to alter the structure, composition and chemical properties of titanium surfaces, including the deposition of bioactive coatings. The PEO method has the advantages of short experiment time and low cost. These advantages have attracted attention recently. Recently, many metal ions such as silicon, magnesium, zinc, strontium, and manganese have received attention in this field due to their impact on bone regeneration. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation and promotes bone metabolism and growth. Manganese (Mn) is an essential trace metal found in all tissues and is required for normal amino acid, lipid, protein and carbohydrate metabolism. The objective of this work was research on the corrosion behavior of Si, Zn and Mn-doped hydroxyapatite on the PEO-treated surface. Anodized alloys was prepared at 270V~300V voltage in the solution containig Zn, Si, and Mn ions. Ion release test was carried out using potentidynamic and AC impedance method in 0.9% NaCl solution. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, AFM and EDS.

  • PDF

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Morphology of RF-sputtered Mn-Coatings for Ti-29Nb-xHf Alloys after Micro-Pore Form by PEO

  • Park, Min-Gyu;Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.197-197
    • /
    • 2016
  • Commercially pure titanium (CP Ti) and Ti-6Al-4V alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Manganese(Mn) plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Radio frequency(RF) magnetron sputtering in the various PVD methods has high deposition rates, high-purity films, extremely high adhesion of films, and excellent uniform layers for depositing a wide range of materials, including metals, alloys and ceramics like a hydroxyapatite. The aim of this study is to research the Mn coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. Mn coatings was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Mn coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Effects of the Solid Solution Treatment Conditions and Casting Methods on Mechanical Properties of Al-Si-Cu Based Alloys (Al-Si-Cu계 합금의 주조법과 용체화처리 조건이 기계적 특성변화에 미치는 영향)

  • Moon, Min-Kook;Kim, Young-Chan;Kim, Yu-Mi;Choi, Se-Weon;Kang, Chang-Seog;Hong, Sung-Kil
    • Journal of Korea Foundry Society
    • /
    • v.38 no.6
    • /
    • pp.111-120
    • /
    • 2018
  • In this study, the effects of two different casting methods (gravity casting and, diecasting) and various solid-solution conditions on the mechanical properties of ASC (Al-10.5wt%Si-1.75wt%Cu) and ALDC12 (Al-10.3wt%Si-1.72wt%Cu-0.76wt%Fe-0.28wt% Mn-0.32wt%Mg-0.9wt%Zn) alloys were investigated. A thermodynamic solidification analysis program (PANDAT) was used to predict the liquidus, solidus, and phases of the used alloys. In the results of an XRD analysis, ${\beta}$-AlFeSi peaks were observed only in the ALDC12 alloy regardless of the casting method or SST (solid-solution treatment) conditions. However, according to the results of a FE-SEM observation, both ${\theta}(Al_2Cu)$ and ${\beta}$-AlFeSi were found to exist besides ${\alpha}$-Al and eutectic Si in the gravity-casted ASC alloy at $500^{\circ}C$ after a SST of 120min. The ${\alpha}$-AlFeSi and ${\beta}$-AlFeSi phases including the eutectic phases were also found to exist in the ALDC12 alloy. The results of a microstructural observation and analyses by XRD, FE-SEM and EDS were in good agreement with the PANDAT results. The gravity-casted ALDC12 and ASC specimens showed the highest Y.S. and UTS values after aging for three hours at $180^{\circ}C$ after a SST at $500^{\circ}C$ for 30min. At longer solid-solution treatment times at $500^{\circ}C$ in the gravity-casted ALDC12 and ASC specimens, the elongations of the ASC alloys increased, whereas they decreased slightly in the ALDC12 alloys.

Characteristics Evaluation of Conversion Coating of Acid Pickling AZ31 Magnesium Alloy by a Chromium-Free Phosphate-Permanganate Solution (비크롬계 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 산처리에 따른 화성 피막의 특성 평가)

  • Kim, Myung-Hwan;Kwag, Sam-Tag;Moon, Myung-Jun
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • A chromium-free conversion coating for AZ31 magnesium alloy has been obtained by using a permanganatephosphate solution, which has been developed with acid pickling. Examination have been carried out on the conversion coatings for morphology, composition and corrosion resistance. The morphology of the conversion-coated layer was observed using optical microscope and SEM. It was shown that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to 2.7 ${\mu}m$. The chemical composition of conversion coating was mainly consisted of Mg, O, P, K, Al and Mn by EDS analysis. It was found that the corrosion resistance of the AZ31 magnesium alloy has been improved by the permanganate-phosphate conversion treatment from electrochemical polarization.

A Study on the Electrochemical Hydrogenation Reaction Mechanism of the Laves Phase Hydrogen Storage Alloys (Laves phase계 수소저장합금의 전기화학적 수소화 반응 매카니즘에 관한 연구)

  • Lee, Ji-Youl;Kim, Chan-Jung;Kim, Dai-Ryong
    • Journal of Hydrogen and New Energy
    • /
    • v.8 no.1
    • /
    • pp.31-41
    • /
    • 1997
  • In order to investigate the mechanism of electrochemical hydrogenation reaction on Zr-based Laves phase hydrogen storage alloy electrodes, electrochemical charge/discharge characteristics, potentiostatic/dynamic polarizations and electrocehmical impedance spectroscopy(EIS) of Zr-Ti-Mn-Ni and Zr-Ti-Mn-Ni-M(M=Fe, Co, Al) alloys were examined. Electrochemical discharge capacities of the alloys were quite different with gas charge capacities. Therefore, it was considered that discharge capacities of the alloys depend on electrochemical kinetic factors rather then thermodynamic ones. Discharge efficiencies were increased linearly with exchange current densities. The results of potentiostatic/dynamic polarization measurements showed that electrochemical charge and discharge reaction of Zr-based Laves phase hydrogen storage alloys is controlled by charge transfer process at the electrode surface. The EIS measurements also confirmed this result.

  • PDF