• Title/Summary/Keyword: Al-Mn alloy

Search Result 179, Processing Time 0.026 seconds

The use of Thermodynamics and Phase Equilibria for Prediction of the Behavior of High Temperature Corrosion of Alloy 617 in Impure Helium Environment

  • Kim, Dong-Jin;Lee, Gyeong-Geun;Kim, Sung-Woo;Kim, Hong-Pyo
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.164-170
    • /
    • 2010
  • Thermodynamic consideration was performed for Alloy 617 exposed to an impure helium ($H_2$ 20pa, $H_2O$ 0.5pa, $CH_4$ 2pa and CO 5pa) at $950^{\circ}C$. Oxidation power was decreased in the order Al > Ti > Si > Cr > Mn. Decarburization and carburization reactions were available leading to carbon activity decrease and increase, respectively, depending on carbon and Cr activities. The thermodynamic prediction was compared with the experimental results obtained in similar conditions (($H_2$ 20pa, $H_2O$ 0.05pa, $CH_4$ 5pa and CO 2pa) and $950^{\circ}C$) by others for Alloy 617. The driving force for oxidation of Al, Ti and Si is very large to be oxidized at a given impure helium and the environment is actually carburizing towards the structural alloy, which is consistent with this work.

An Investigation on the Microstructure Evolution and Tensile Property in the Weld Heat-Affected Zone of Austenitic FeMnAlC Lightweight Steels (오스테나이트계 FeMnAlC 경량철강의 용접열영향부 미세조직 변화 및 인장특성에 관한 연구)

  • Moon, Joonoh;Park, Seong-Jun
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • IMicrostructure evolution and tensile property in the weld heat-affected zone (HAZ) of austenitic Fe-30Mn-9Al-0.9C lightweight steels were investigated. Five alloys with different V and Nb content were prepared by vacuum induction melting and hot rolling process. The HAZ samples were simulated by a Gleeble simulator with welding condition of 300kJ/cm heat input and HAZ peak temperatures of $1150^{\circ}C$ and $1250^{\circ}C$. Microstructures of base steels and HAZ samples were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and their mechanical properties were evaluated by tensile tests. The addition of V and Nb formed fine V and/or Nb-rich carbides, and these carbides increased tensile and yield strength of base steels by grain refinement and precipitation hardening. During thermal cycle for HAZ simulation, the grain growth occurred and the ordered carbide (${\kappa}-carbide$) formed in the HAZs. The yield strength of HAZ samples (HAZ 1) simulated in $1150^{\circ}C$ peak temperature was higher as compared to the base steel due to the formation of ${\kappa}-carbide$, while the yield strength of the HAZ samples (HAZ 2) simulated in $1250^{\circ}C$ decreased as compared to HAZ 1 due to the excessive grain growth.

Real-time Observation and Analysis of Solidification Sequence of Fe-Rich Al-Si-Cu Casting Alloy by Synchrotron X-ray Radiography (가속 방사광을 활용한 Fe함유 Al-Si-Cu 주조용 합금의 응고과정 실시간 관찰 및 분석)

  • Kim, Bong-Hwan;Lee, Sang-Hwan;Yasuda, Hideyuki;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.100-110
    • /
    • 2010
  • The solidification sequence and formation of intermetallic phase of Fe-rich Al-Si-Cu alloy were investigated by using real-time imaging of synchrotron X-ray radiation. Effects of cooling rate during uni-directional solidification on the resultant solidification behavior was also studied in a specially constructed vacuum chamber in the SPring-8 facility. The series of radiographic images were complementarily analyzed with conventional analysis of OM and SEM/EDX for phase identification. Detailed solidification sequence and formation mechanisms of various phases were discussed based on real-time image analysis. The growth rates of $\alpha$-AlFeMnSi and ${\beta}-Al_5FeSi$ were measured in order to understand the growth behavior of each phase. It is suggested that real-time imaging technique can be a powerful tool for the precise understanding of solidification behavior of various industrial materials.

Spectral Line Identification and Emission Characteristics of the Laser-Induced Plasma in Pulsed Nd:YAG Laser Welding (펄스 YAG 레이저 용접시 유기하는 플라즈마의 스펙트럼선 동정과 발광특성)

  • 김종도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.360-368
    • /
    • 1999
  • The paper describes spectroscopic characteristics of plasma induced in the pulsed YAG laser welding of alloys containing a large amount of volatile elements. The authors have conducted the spectroscopic analyses of laser induced Al-Mg alloys plasma in the air and argon atmosphere. In the air environment the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn and singly ionized Mg lines as well as the intense molecular spectra of ALO and MgO formed by chemi-cal reactions of evaporated Al and Mg atoms from the pool surface with oxygen in the air. In argon atmosphere MgO and AlO spectra vanished but AlH spectrum was detected. the hydrogen source was presumable hydrogen dissolved in the base metals water absorbed on the surface oxide layer or $H_2$ and $H_2O$ in the shielding gas. The resonant lines of Al and Mg were strongly self-absorbed in particular self-absorption of the Mg line was predominant. These results show that the laser induced plasma was made of metallic vapor with relatively low temperature and high density.

  • PDF

Effect of Pre-Rolling on the Mechanical Properties of AI-Mg-Mn Alloy (Al-Mg-Mn합금의 기계적(機械的) 성질(性質)에 미친 여비압재(予備圧在)의 영향(影響))

  • Ye, Gil-Chon;Maeng, Sun-Chae
    • Applied Microscopy
    • /
    • v.4 no.1
    • /
    • pp.5-10
    • /
    • 1974
  • In this work the effect of pre-rolling on the homogenization and on the mechanical properties of 4.6% Mg-0.5% Mn-0.18% Cr-Al alloy has been studied. At room temperature tensile strength and elongation have been found to increase in the pre- rolled homogenized sample compared to those of the as cast sample. At $400^{\circ}C$ this pre-rolled homogenized sample has shown a little lower tensile strength and a remarkably higher elongation than the samples as casted or homogenized without pre-rolling. Metallurgical microstructure of the pre-rolled homogenized sample has shown conspicuously less secondary phase such as ${\beta}$-phase at the grain boundaries than the other samples. The difference of magnesium content between grain boundaries and within the grains has been also checked by EPMA. The test results show enhanced homogenizing effect by the pre-rolling before homogenizing heat treatment.

  • PDF

Development and Application of Electrode for a New Secondary Aqueous Cell (새로운 수용성 2차 전지용 전극의 개발과 응용)

  • Hwang, Kum-Sho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.2
    • /
    • pp.165-170
    • /
    • 2005
  • Al-Zn alloy/$MnO_2$, seawater cell was considered as a primary aqueous cell with an average voltage range from 1.0 to 1.1V, and the electrolyte of seawater was uptaken into the cell. Eventually, the capacity of its usage will be used for long-term. However, the more use of this cell, the higher corrosion phenomenon of the electrode occurred. Due to its corrosion phenomenon, one main default has been observed with gradual decrease during a discharge process. In this research, a common-used active material for anode was $LiNiO_2$. An active material for cathode, $Zn_{X}FeS_2$ was synthesized in high temperature by uptaken a small amount of 1.3 wt% of ZnS into $FeS_2$, one of the transition-metal dichalcogenides in high temperature. Consequently, based on their usages shown above, this secondary aqueous lithium cell could be more developed. This cell was shown as remarkable charge/discharge performance during the charge/discharge processes. This cathode with active material was given a considerable efficiency of inserting $Li^+$ ions. Moreever, in accordance with the characteristic of the crystal structure for $Zn_{x}FeS_2$, a small amount of ZnS was added which made it possible to reduce prominently velocity of corrosion during the charge/discharge cycle. By applying those merits, Al-Zn alloy/$MnO_2$ seawater cell will be used as a fundamental data in order to transform into a secondary aqueous cell.

Effects of Pd Addition on Electrode properties of Metal Hydride (Pd 첨가가 금속수소화물 전극 특성에 미치는 영향)

  • Choi, Jeon;Lee, Kyung-Ku
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 1999
  • Recently the Ni/MH secondary battery has been studied extensively to achieve higher energy density, longer cycle life and faster charging-discharging rate etc. In this work, the electrode properties of $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$ alloy and $Ti_{0.6}Zr_{0.4}V_{0.6}Ni_{1.4}$ alloy with addition of Pd were investigated. These alloys did not show any change in XRD pattern by Pd addition. As Pd was added as alloy element, the activation behavior was not affected significantly in both $AB_2$ type and $AB_5$ type electrodes and, On charging and discharging in high current density, Discharge capacity with increasing of Pd content was more decreased. But cycle life was showed increasing. Especially the electrode of $Ti_{0.6}Zr_{0.4}V_{0.6}Ni_{1.4}+0.5wt%$ Pd alloy was not almost decreased discharge capacity for 400cycles.

  • PDF

Effects of Mn and Heat-input on the Mechanical Properties of EGW Welds (일렉트로 가스 용접부의 기계적 성질에 미치는 Mn 및 입열량의 영향)

  • Kim, Nam In;Jeong, Sang Hoon;Lee, Jeong Soo;Kang, Sung Won;Kim, Myung Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.195-201
    • /
    • 2009
  • This paper is concerned with effects of Mn and heat-input on the mechanical properties of EGW welds. Four different kinds of welding consumables were fabricated by varying Mn contents such as 1.3, 1.5, 1.7, 2.0%Mn and each consumable was welded for EGW on four heat-input conditions between 190 and 340 KJ/Cm. Mn contents were decreased as heat-input increases and alloy elements (C, Si, Ti, B, Al) to deoxidize easily also revealed similar tendency to Mn. Their microstructure, Charpy impact property and strength were investigated, and it is found that Charpy impact property and strength exhibit a strong dependence on change of microstructure by Mn contents and heat-input. The increase of Mn contents or the decrease of heat-input made the microstructure fine and increase volume fraction of acicular ferrite, thereby leading to the great improvement of Charpy impact property and strength. In case of single EGW, optimum Mn contents are over 1.7% for the toughness and strength.

Development of Continuous Galvanization-compatible Martensitic Steel

  • Gong, Y.F.;Song, T.J.;Kim, Han S.;Kwak, J.H.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The development of martensitic grades which can be processed in continuous galvanizing lines requires the reduction of the oxides formed on the steel during the hot dip process. This reduction mechanism was investigated in detail by means of High Resolution Transmission Electron Microscopy (HR-TEM) of cross-sectional samples. Annealing of a martensitic steel in a 10% $H_2+N_2$ atmosphere with the dew point of $-35^{\circ}C$ resulted in the formation of a thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film and amorphous $_{a-X}MnO.SiO_{2}$ oxide particles on the surface. During the hot dip galvanizing in Zn-0.13%Al, the thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was reduced by the Al. The $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides however remained embedded in the Zn coating close to the steel/coating interface. No $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formation was observed. During hot dip galvanizing in Zn-0.20%Al, the $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was also reduced and the amorphous $_{a-X}MnO.SiO_{2}$ and $a-SiO_{2}$ particles were embedded in the $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formed at the steel/coating interface during hot dipping. The results clearly show that Al in the liquid Zn bath can reduce the crystalline $_{C-X}MnO.SiO_{2}$ (x>1) oxides but not the amorphous $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides. These oxides remain embedded in the Zn layer or in the inhibition layer, making it possible to apply a Zn or Zn-alloy coating on martensitic steel by hot dipping. The hot dipping process was also found to deteriorate the mechanical properties, independently of the Zn bath composition.

Effect of Mn Addition on Age Behavior and Tensile Properties of Rapidly Solidified Al-Zn-Mg-Zr Alloy (급냉응고한 Al-Zn-Mg-Zr합금의 시효거동과 인장특성에 미치는 Mn의 영향)

  • Lee, Yeong-Ho;Jang, Jun-Yeon;Yu, Jae-Eun;Mun, In-Gi;Maeng, Seon-Jae;Choe, Jong-Sul
    • Korean Journal of Materials Research
    • /
    • v.7 no.1
    • /
    • pp.50-56
    • /
    • 1997
  • 급냉응고법을 이용하여 고용한도 이상으로 Mn량을 첨가할 때 Mn량에 따른 인장특성의 변화와 시효특성을 조사하였다. 원심분무법으로 AI-4.7%Zn-2.5%Mg-0.2%Zr합금에 Mn량을 각기 달리 첨가한 급냉응고 분말을 제조 하였다. 이 분말을 냉간압축, 진공 탈가스처리를 한 후 15:1로 압출하여 봉상 시편을 만들었다. 분말의 미세조직은 $\alpha$-AI수지상과 수지상간 편석부로 이루어져 있으며 Mn첨가에 따라 조직의 변화는 관찰되지 않았다. 빠른 냉각속도로 인하여 2.0%Mn을 첨가한 경우에도 초정 Mn상을 발견할 수 없었다. 압출재의 미세조직은 아결정립으로 이루어져 있으며 약간의 제2상들이 관찰되었다. 대부분의 Mn 분산상은 압출후 용체화처리 과정에서 형성되었으며 시효경화량은 Mn양에 관계없이 일정하였다. 46$0^{\circ}C$에서 1시간 용체화처리하고 12$0^{\circ}C$에서 24시간 시효처리한 경우 최대의 시효경도값을 나타내었다. 인장강도는 Mn첨가량에 따라 증가 하였는데 이것은 Mn분산상의 밀도증가에 의한 것으로 확인되었다. 2.0%Mn을 첨가한 합금의 시효후 인장강도는 590MPa, 연산율은 4%를 보였다.

  • PDF