• 제목/요약/키워드: Al-Mg-Zn alloy

검색결과 184건 처리시간 0.026초

배관 방식용 접지전지 설계를 위한 유전양극의 특성에 관한 연구 (Galvanic Anode Charactristics of Grounding Cell Design for Corrosion Protection of Pipings)

  • 임우조
    • 수산해양기술연구
    • /
    • 제19권1호
    • /
    • pp.57-62
    • /
    • 1983
  • 접지전지 설계를 위한 Zn, Al 및 Mg의 합급양극의 특성을 실험적으로 조사한 결과를 다음과 같이 요약할 수 있다. 1. 환경비저항 1000 $\Omega$.cm 이하에서는 Zn합금양극이, 1000 $\Omega$.cm 이상에서는 Mg합금양극이 접지전지 설계에 좋다. 2. 비저항 500 $\Omega$.cm 이하에서는 Al합금양극이 Mg 합금양극보다 접지전지 설계를 위한 유전양극 특성이 좋으나 모든 비저항에서 Zn합금양극보다 특성이 떨어진다. 3. 배유전유밀도가 급격히 증가하는 일정인가전압은 다음과 같다. \circled1 E 하(Zn)=log (4.9465/$\rho$상(0.0639))+11$\times$10 상(-6)$\rho$상(0.8923i) \circled2 E 하(Al)=log (4.9306/$\rho$상(0.0525))+13$\times$10 상(-6)$\rho$상(0.9314i) \circled3 E 하(Mg)= log (3.7086/$\rho$상(0.0988))+181$\times$10 상(-6)$\rho$상(0.5406i) 4. 유전양극의 종류 및 환경의 비저항에 따라 인가전압과 배유전유밀도의 관계는 다음과 같은 일반식으로 표시할 수 있다. logi=g+root(n.E+r)

  • PDF

Al-Zn-Mg-Cu계 알루미늄 합금의 열간 균열 특성에 미치는 합금조성의 영향 (The Influence of Alloy Composition on the Hot Tear Susceptibility of the Al-Zn-Mg-Cu Alloy System)

  • 김지훈;조재섭;심우정;임항준
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.669-675
    • /
    • 2012
  • Hot tearing was the most significant casting defect when the castability evaluation of the Al-Zn-Mg-Cu alloy system was conducted. It was related to the solidification range of the alloy. Therefore, the hot tear susceptibility of the AA7075 alloy, whose solidification range is the widest, was evaluated. The hot tear susceptibility was evaluated by using a mold for a hot tearing test designed to create the condition for the occurrence of hot tear in 8 steps. According to the tearing location and shape, a hot tear susceptibility index (HTS) score was measured. The solidification range of each alloy and hot tear susceptibility was compared and thereafter the microstructure of a near tear defect was observed. As a result, the HTS of the AA7075 alloy was found to be 67. Also, the HTS in relation to a change in Zn, Mg, Cu composition showed a difference of about 6-11% compared to the AA7075 alloy.

Al-5%Mg계 주조합금의 물성 및 시효경화특성에 미치는 합금원소의 영향 (Effects of Alloying Elements on the Properties and Aging Hardening of Al-5%Mg Based Casting Alloys)

  • 김정민;박준식;조재익;김현길
    • 한국주조공학회지
    • /
    • 제30권1호
    • /
    • pp.29-33
    • /
    • 2010
  • The microstructure of Al-5%Mg based alloy mainly consists of aluminum matrix with a small amount of AlMn phase. The addition of Sc or Zn to the base alloy significantly improved the as-cast tensile strength, while the addition of Fe deteriorated both strength and ductility. Although the Al-5%Mg based alloy was not heat-treatable, aging hardening could be observed in the case that Sc or Zn was added to the base alloy. TEM analysis showed that very fine AlSc or AlMgZn precipitates were formed after T6 heat treatment, resulting in enhanced strength. The corrosion resistance measured as corrosion potential was found to decrease a little by adding Zn, whereas other alloying elements were not clearly influential.

Mg, Zn, Si 성분이 7xxx 계 알루미늄 합금의 압출성에 미치는 영향 (The Effect of Mg, Zn, Si wt(%) on the Extrudability of 7xxx Al Alloy)

  • 함현욱;김병민;조훈;조형호
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.148-157
    • /
    • 1999
  • The objective of this study is to investigate the effect of three main chemical compositions(Mg, Zn, Si) on extrudability of 7xxx Al alloy with high tensile strength. A few Al alloys based on 7xxx alloys were metal mold cast with various weight*%) of Mg 0.3-1.2%, Zn 5.0-8.0% and Si 0.4-0.7%, to envestigate the effects of extrudability, as well as mechanical properties. To measure the extrudability of cast billets, maximum extrusion pressure and surface temperature at die exit before tearing occurs were obtained by experiment and simulation of thermo-viscoplastic F.E.M. Also the yield and tensile strength of extruded products were tested.

  • PDF

High Temperature Deformation Behavior of Al-Zn-Mg-Based New Alloy Using a Dynamic Material Model

  • Jang, Bong Jung;Park, Hyun Soon;Kim, Mok-Soon
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1249-1255
    • /
    • 2018
  • High temperature compression tests for newly developed Al-Zn-Mg alloy were carried out to investigate its hot deformation behavior and obtain deformation processing maps. In the compression tests, cylindrical specimens were deformed at high temperatures ($300-500^{\circ}C$) and strain rates of 0.001-1/s. Using the true stress-true strain curves obtained from the compression tests, processing maps were constructed by evaluating the power dissipation efficiency map and flow instability map. The processing map can be divided into three areas according to the microstructures of the deformed specimens: instability area with flow localization, instability area with mixed grains, and stable area with homogeneous grains resulting from continuous dynamic recrystallization (CDRX). The results suggest that the optimal processing conditions for the Al-Zn-Mg alloy are $450^{\circ}C$ and a strain rate of 0.001/s, having a stable area with homogeneous grains resulting from CDRX.

Sc을 첨가한 Al-7.7wt%Zn-2.0wt%Mg-1.9wt%Cu합금의 고온 변형거동 (High Temperature Deformation Behavior of Sc Added Al-7.7wt%Zn-2.0wt%Mg-1.9wt%Cu Alloy)

  • 우기도;유용석;김석원
    • 한국재료학회지
    • /
    • 제13권12호
    • /
    • pp.819-824
    • /
    • 2003
  • The Al-7.7Zn-2.0Mg-1.9Cu-0.1Zr-0.1Sc alloy exhibited excellent elongation by the new thermomechanical treatment (TMT) process; solution treatment and furnace cooling\longrightarrowhot and cold rolling and then annealing for short time. Tensile test at high temperature from 430 to $500^{\circ}C$ has been performed with various strain rates using for the Al-7.7Zn-2.0Mg-1.9Cu-0.1Zr-0.1Sc alloy obtained by the TMT process. The elongation of the Al-7.7Zn-2.0Mg-1.9Cu-0.1Zr-0.1Sc was 550% tensile tested at $470^{\circ}C$ temperature and 2.2 $\times$ $10^{-3}$ $s^{-1}$ strain rate. The m value of Al-7.7Zn-2.0Mg-1.9Cu-0.1Zr-0.1Sc alloy deformed 85% increased from 0.33 to 0.46 with increasing total elongation. This new TMT process was very simple and easy to make the sheets in the company.

7N01 Al 합금의 미세조직 및 기계적 성질에 미치는 시효처리의 영향 (Effect of Aging Treatment on the Microstructures and Mechanical Properties of 7N01 Aluminium Alloy)

  • 황윤구;강민철;강정윤;김인배
    • 열처리공학회지
    • /
    • 제13권2호
    • /
    • pp.103-107
    • /
    • 2000
  • Effect of aging treatment on the microstructures and mechanical properties of 7N01 Al alloy was investigated by differential scanning calorimetry, transmission electron microscopy, microhardness measurement and tensile test. Maximum hardness(125.7Hv) and tensile strength(447.3MPa) were obtained from the specimen aged at $120^{\circ}C$ for 32hrs. The major precipitation hardening phase was confirmed as coherent $MgZn_2({\eta}^{\prime})$ phase. Microhardness changes after peakaged condition showed very large decrease upon increased aging time. This result was attributed to the high transformation rate from coherent ${\eta}^{\prime}$ to incoherent ${\eta}$. It was found that the precipitation sequence of 7N01 Al alloy was GP zone${\rightarrow}$metastable spherical hcp $MgZn_2({\eta}^{\prime}){\rightarrow}$ equilibrium rodlike hcp $MgZn_2({\eta})$.

  • PDF

용체화처리 후 연속 냉각한 Mg-8%Al-X%Zn 합금에서 생성된 불연속 석출물의 미세조직과 경도에 미치는 Zn 함량의 영향 (Effects of Zn Content on Microstructure and Hardness of Discontinuous Precipitates Formed in Mg-8%Al-X%Zn Alloys Subjected to Continuous Cooling after Solution Treatment)

  • 전중환
    • 열처리공학회지
    • /
    • 제36권4호
    • /
    • pp.223-229
    • /
    • 2023
  • This work was intended to investigate the effects of Zn content on microstructure and hardness of discontinuous precipitates (DPs) produced by continuous cooling (CC) in Mg-8%Al-X%Zn alloys with 0%, 0.5% and 1% of Zn contents (wt%). The DPs in the alloys possessed a wide range of (α+β) interlamellar spacings, which is attributed to the different transformation temperatures during CC. The higher Zn content resulted in the lower level of interlamellar spacings of the DPs, along with thinner and larger volume fraction of β phase layer in the DPs. It is noted that the DPs in the alloy with higher Zn content exhibited higher hardness, and that the ratio of increase in hardness of the DPs to that of the as-cast state was also increased with increasing Zn content. The reason was discussed on the basis of microstructural differences of the DPs in the Mg-8%Al-X%Zn alloys.

Mg-8%Al 주조 합금의 부식 거동에 미치는 Zn 첨가의 영향 (Effect of Zn Addition on Corrosion Behavior of Mg-8%Al Casting Alloy)

  • 황인제;문정현;전중환;김영직
    • 한국주조공학회지
    • /
    • 제35권3호
    • /
    • pp.53-61
    • /
    • 2015
  • Effects of Zn addition on the microstructure and corrosion behavior of Mg-8%Al-(0-1)%Zn casting alloys were investigated. With increasing Zn content, the amount of ${\beta}(Mg_{17}Al_{12})$ phase increased, while ${\alpha}$-(Mg) dendritic cell size became reduced. The corrosion rate decreased continuously with the increase in the Zn content. The evaluation of the microstructural evolution indicates that the improved barrier effect of ${\beta}$ particles formed more continuously along the dendritic cell boundaries and the incorporation of more ZnO into the surface corrosion product, by which the absorption of $Cl^-$ ions is impeded, are responsible for the better corrosion resistance in relation to the Zn addition.

고강도 Al-Zn-Mg-Cu 합금에서 조성에 따른 응력부식균열 특성 (Stress Corrosion Cracking of High Strength Al-Zn-Mg-Cu Aluminum Alloy with Different Compositions)

  • 김준탁;김상호
    • 한국표면공학회지
    • /
    • 제41권3호
    • /
    • pp.109-113
    • /
    • 2008
  • High strength 7xxx series Al-Zn-Mg alloy have been investigated for using light weight automotive parts especially for bump back beam. The composition of commercial 7xxx aluminum has the Zn/Mg ratio about 3 and Cu over 2 wt%, but this composition isn't adequate for appling to automotive bump back beam due to its high resistance to extrusion and bad weldability. In this study the Zn/Mg ratio was increased for better extrusion and Cu content was reduced for better welding. With this new composition we investigated the effect of composition on the resistivity against stress corrosion cracking. As the Zn/Mg ratio is increased fracture energy obtained by slow strain rate test was decreased, which means degradation of SCC resistance. While the fracture energy was increased with Cu contents although it is below 1%, which means improvement of SCC resistance. These effects of composition change on the SCC resistivity were identified by observing the fracture surface and crack propagation.