• Title/Summary/Keyword: Al-Mg-Zn alloy

Search Result 184, Processing Time 0.023 seconds

Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy (Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구)

  • W. G. Seo;K. Thool;H. N. Lee;D. J. Yang;S. G. Park;S. H. Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.

The Influence of Alloying Elements on the Fluidity of Al-Zn-Mg Alloys (Al-Zn-Mg계 알루미늄 합금의 유동성에 미치는 합금원소의 영향)

  • Cho, Jea-Sup;Kim, Jee-Hun;Sim, Woo-Jeong;Im, Hang-Joon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.3
    • /
    • pp.127-132
    • /
    • 2012
  • Al-Zn-Mg alloys, being high strength aluminum alloys, have attracted attention as a material of automobile parts that require higher mechanical properties and lightness. Automobile parts with complex shapes are manufactured by low-priced casting method, but Al-Zn-Mg alloys are difficult to cast because of its poor hot cracking, feeding, and fluidity. Thus fluidity experiments on Al-Zn-Mg alloys were conducted for the castability evaluation. The effects of Mg and Zn, representative elements of Al-Zn-Mg alloys, on fluidity were observed. Spiral mold was used for fluidity experiments and the lengths of solidified specimens were measured after melting and gravity casting. Correlation between microstructures and fluidity length based on the alloy composition was considered. According to the experimental results, as the amount of Mg and Zn increased, fluidity decreased. Also, it was confirmed that fluidity change by the variation of Mg composition was greater than that of Zn.

Effects of Cooling Rates of Coating Layer on Microstructures and Corrosion Behaviors of Zn-Al-Mg Alloy Coated Steel Sheets (Zn-Al-Mg 합금도금강판의 도금 층 냉각속도 제어에 따른 미세조직 및 부식거동 분석)

  • Lee, Jae-Won;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • To understand effects of cooling rates of coating layer on microstructures and corrosion behaviors of hot-dip alloy coated steel sheets (Zn-5%Al-2%Mg) in a neutral aqueous condition with chloride ion, a range of experimental and analytical methods were used in this study. Results showed that a faster cooling rate during solidification decreased the fraction of primary Zn, and increased the fraction of Zn-Al phase. In addition, interlamellar spacing became refined under a faster cooling rate. These modifications of the coating structure had higher open circuit potentials (OCP) with smaller anodic and cathodic current densities in the electrochemical potentiodynamic polarization. Surface analyses after a salt spray test showed that the increase in the Zn-Al phase in the coating formed under a faster cooling rate might have contributed to the formation of simonkolleite (Zn5(OH)8Cl2·H2O) and hydrotalcite (ZnAl2(OH)6Cl2·H2O) with a protective nature on the corroded outer surface, thus delaying the formation of red rust.

Corrosion Behavior of Solution-Treated Mg-8%Al-X%Zn Casting Alloys (용체화처리된 주조용 Mg-8%Al-X%Zn 합금의 부식 거동)

  • Jun, Joong-Hwan;Hwang, In-Je
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.3
    • /
    • pp.126-133
    • /
    • 2015
  • The aim of this study is to investigate the effect of solution treatment on the corrosion behavior of Mg-8%Al-(0-1)%Zn casting alloys in 1M NaCl aqueous solution. After the solution treatment, all alloys showed single ${\alpha}$-(Mg) phase microstructure by dissolution of ${\beta}(Mg_{17}Al_{12})$ phase into the ${\alpha}$-(Mg) matrix. The $H_2$ evolution volume decreased with an increase in Zn content, which indicates that the addition of Zn plays a beneficial role in decreasing corrosion rate of the Mg-Al-Zn alloy in solution-treated state. The microstructural evaluations on the corrosion products and corroded surfaces after the immersion test in 1 M NaCl solution revealed that the incorporation of more $Al_2O_3$ and ZnO into the corrosion product, by which the penetration of $Cl^-$ ions is impeded, are thought to be responsible for the better corrosion resistance in relation with the Zn addition.

Effect of Heat Treatment on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Si Sintered Alloys with and Without High-energy Ball Milling (Al-Zn-Mg-Cu-Si 소결합금의 미세조직과 기계적 특성에 미치는 열처리의 영향)

  • Junho Lee;Seonghyun Park;Sang-Hwa Lee;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.470-477
    • /
    • 2023
  • The effects of annealing on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500℃ causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 ㎛ and from 2.9 to 6.3 ㎛, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.

The Solution Treatment on Thixo-extrudates of Semi-solid Al-Zn-Mg Alloy (Al-Zn-Mg 반용융 압출재의 용체화처리)

  • Kim, Dae-Hwan;Kim, Hee-Kyung;Eom, Jeong-Pil;Lim, Su-Gun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.4
    • /
    • pp.165-172
    • /
    • 2013
  • In the present study, the microstructure and solution treatment response of Al-Zn-Mg alloys bars by thixo-extrusion was investigated. The alloy bars were solution treated at 400, 430, 460 and $490^{\circ}C$ for various times. In order to examine the microstructures and phase analysis of the samples after solution treatment, it was performed by optical and scanning electron microscopy. And, Vickers hardness and electrical conductivity was measured on the solution treated samples for each condition to investigate the solution treatment response of extruded bars during solution treatment. The results show that the optimum solution heat treatment conditions of thixo-extruded Al-Zn-Mg alloy for minimization of the grain growth and degradation promotion of the second phase is a temperature of $460^{\circ}C$ and holding time of 0.5 to 2 h.

Effect of Sc Addition on Microstructure, Electrical Conductivity, Thermal Conductivity and Mechanical Properties of Al-2Zn-1Cu-0.3Mg Based Alloy (Al-2Zn-1Cu-0.3Mg합금의 Sc첨가에 따른 미세조직, 전기전도도, 열전도도 및 기계적 특성 변화)

  • Na, Sang-Su;Kim, Yong-Ho;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.542-549
    • /
    • 2020
  • Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 ㎛; however, this value drops to 914 and 529 ㎛ with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the as-extruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.

Corrosion behavior of Zn-MgZn2 Eutectic Structure in Zn-Mg-Al alloy coated steel (Zn-Mg-Al 합금도금강판의 Zn-MgZn2 공정조직의 부식거동)

  • Lee, Jae-Won;Son, Hong-Gyun;Min, Jae-Gyu;Yu, Yeong-Ran;Gwak, Yeong-Jin;Kim, Tae-Yeop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.280-280
    • /
    • 2012
  • Mg의 첨가한 Zn-Mg-Al 합금도금강판에 형성된 $Zn-MgZn_2$ 공정조직의 부식거동을 이해하고자 진공 고주파 용해로 $MgZn_2$ 제작한 후 Zn와 galvanic coupling하여 $MgZn_2$합금과 Zn간의 galvanic corrosion 거동을 알아보았다. $MgZn_2-Zn$ galvanic coupling의 SVET 결과에서 $MgZn_2$가 anode, Zn가 cathode가 됨을 확인되었다. $MgZn_2$의 Zn와의 galvanic corrosion 평가에서 galvanic current는 Zn 보다 낮은 potential에서 anodic current density를 나타내었으며, galvanic potential은 $MgZn_2$전위로부터 두 합금의 혼합전위를 향해 증가함을 알 수 있었다. Zn-Mg-Al 합금도금강판의 염수분무 평가에서도 초기 $Zn-MgZn_2$ 공정조직에서 $MgZn_2$가 용출되는 것이 관찰되었다.

  • PDF

Effect of Alloying Element Addition on the Microstructure, Tensile and Impact Toughness of the Modified Al-6.5Si Alloy (개량 Al-6.5Si 합금의 미세조직, 인장 및 충격 인성에 미치는 합금 원소 첨가의 영향)

  • Park, T.H.;Baek, M.S.;Yoon, S.I.;Kim, J.P.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.135-143
    • /
    • 2020
  • Low-cost alloying elements were added to a modified Al-6.5Si alloy and its microstructure, tensile and impact toughness properties were investigated. The alloying elements added were Mg, Zn, and Cu, and two kinds of alloy A (Mg:0.5, Zn:1, Cu:1.5 wt.%) and alloy B (Mg:2, Zn:1.5, Cu:2 wt.%) were prepared. In the as-cast Al-6.5Si alloys, Si phases were distributed at the dendrite interfaces, and Al2Cu, Mg2Si, Al6 (Fe,Mn) and Al5 (Fe,Mn)Si precipitates were also observed. The size and fraction of casting defects were measured to be higher for alloy A than for alloy B. The secondary dendrite arm spacing of alloy B was finer than that of alloy A. It was confirmed by the JMatPro S/W that the cooling rate of alloy B could be more rapid than alloy A. The alloy B had higher hardness and strength compared to the values of alloy A. However, the alloy A showed better impact toughness than alloy B. Based on the above results, the deformation mechanism of Al-6.5Si alloy and the improving method for mechanical properties were also discussed.