• 제목/요약/키워드: Al-Cu alloys

검색결과 262건 처리시간 0.023초

메조스코픽 구조를 가지는 급냉응고 Al-Nd-(Cu,Ag)합금의 기계적 성질 (Mechanical Properties in Rapidly Solidified Al-Nd-(Cu,Ag) Alloys with Mesoscopic Structure)

  • 고근우;김영환;김한군
    • 열처리공학회지
    • /
    • 제12권4호
    • /
    • pp.320-326
    • /
    • 1999
  • In rapidly solidified $Al_{92-x}Nd_8$(Cu,Ag)x ($0{\leq}X{\leq}10at%$) alloys, amorphous single phases were obtained in the ranges of $Oat%{\leq}X{\leq}4at%$ for Al-Nd-Cu system and $Oat%{\leq}X{\leq}6at%$ for Al-Nd-Ag system, respectively. Mesoscopic structures consisted of amorphous and crystalline phases were formed above solute ranges. It was founded that the mesoscopic structures were also formed near 1st exothermic peak on DSC curve by aging in amorphous single phase alloys. For example, amorphous $Al_{92-x}Nd_8$(Cu,Ag)x (X=2.4at%) alloys containing nanoscale Al particles and compounds, i.e., mesoscopic structure, exhibited higher tensile fracture strength(${\sigma}_f$) than those of amorphous single phase alloys with the same composition. The ${\sigma}_f$ showed a maximum value in the $V_f$ ranges of 10~15%. The reason is presumed that the nanoscale precipitates which have higher mechanical strength compared with the amorphous phase with the same composition act as an effective resistance to shear deformation of the amorphous matrix.

  • PDF

급속응고한 Al-Mg 합금의 미세조직 및 인장특성에 미치는 첨가원소의 영향 (Effects of Alloying Elements on the Microstructure and Tensile Properties of Rapidly Solidified Al-Mg Alloys)

  • 박현호;박종성;김명호
    • 한국주조공학회지
    • /
    • 제17권4호
    • /
    • pp.356-364
    • /
    • 1997
  • In order to study effects of Cu and Be on the microstructure and tensile properties of rapidly solidified Al-Mg alloys, Al-Mg-Cu-Be alloys have been rapidly solidified by inert gas atomization process. Microstructure of rapidly solidified Al-Mg-Cu-Be powders exhibited refinement and good dispersion of Be particles as increasing of solidification rate. Solidification rate of atomized powders was estimated to be about $5{\times}10^{3{\circ}}C/s$. Inert gas atomized Al-Mg-Cu-Be powders were hot-processed by vacuum hot pressing at $450^{\circ}C$ under 100 MPa and hot extruded with reduction ratio in area of 25: 1 at $450^{\circ}C$. The extruded Al-Mg-Cu-Be powders consisted of recrystallized fine Al grains and homogeneously dispersed fine Be particles, and exhibited improved tensile properties with increase in Cu content. $Al_2CuMg$ compounds precipitated in grain and grain boundaries of Al-Mg-Cu-Be alloys with aging heat treatment after solution treatment. Hardness and tensile properties were improved by increasing Cu content and Be addition. Compared with extruded Al-Mg-Cu powders, the extruded Al-Mg-Cu-Be powders exhibited finer recrystallized grains and improved tensile properties by dispersion hardening of Be and subgrain boundaries pinned by fine Be particles. After aging treatment, hardness and tensile properties were improved due to restricted precipitation by increasing of dislocation density around Be particles in matrix.

  • PDF

Al-10.5wt%Si-2wt%Cu 다이 캐스팅용 2차 지금의 기계적 특성과 전기전도도에 미치는 Sr 양과 유지시간의 영향 II (The Effect of Sr Addition and Holding Time on Mechanical Property and Electrical Conductivity of Al-10.5%Si-2%Cu Secondary Die-casting Alloys)

  • 신상수;김명용;염길용
    • 한국주조공학회지
    • /
    • 제30권6호
    • /
    • pp.205-209
    • /
    • 2010
  • This study evaluates the influence of strontium addition and holding time on mechanical properties for Al-10.5wt%Si-2wt%Cu secondary die-casting alloy and the measured electrical conductivity of modified alloys. A general improvement in the mechanical properties of the alloy was observed after adding the strontium. Ultimate tensile strength, elongation and electrical conductivity of modified alloys were improved by increasing strontium content and holding time. From these results, the optimal strontium content and holding time were identified on the mechanical properties of Al-10.5wt%Si-2wt%Cu secondary die-casting alloys.

커넥터용 Cu-Ni-Mn-Sn계 합금의 가공성에 미치는 Zr 첨가효과 (The effects of Zr on the mechanical workability in Cu-Ni-Mn-Sn connector alloys)

  • 한승전;공만식;김상식;김창주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.246-249
    • /
    • 2000
  • The effects of Zr on the mechanical workability and tensile strength of Cu-Ni-Mn-Sn-Al alloys have been investigated and the following results were obtained. The mechanical workability of Cu-Ni-Mn-Sn-Al alloys are increased with addition of Zr. And the surface cracks of specimen were not produced in Zr added Alloys. Especially in condition of hot-worked beyond the 90% working ratio, Zr contained specimen showed intra-granule crack propagation but Zr-free specimen showed inter-granule mode. The tensile strength have maximum value in 0.05% Zr contained alloy. The aging mechanism of Cu-Ni-Mn-Sn-Al alloys were varied by Zr addition.

  • PDF

오버레이 용접법에 의한 Al-Cu 합금 경화후막의 특성 (A Characteristics of Thick and Hard Al-Cu Alloy by Overlaying Welding Process)

  • 박정식;양변모;박경재
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.53-61
    • /
    • 1996
  • It was attempted to improve the wear resistance of Al alloy under the load condition by making a formation of the thicker surface hardening alloy layers. The thicker surface hardening alloy layers were formed on 6061 Al alloys overlayed by MIG and TIG welding process with Cu powders feeding. The characteristics of hardening and wear resistance have been investigated in relation to the microstructures of alloyed layers, with a selection of optimum alloying conditions for formation of overlaying layer. The results obtained were summarized as follows With increasing feeding rate of Cu powders by MIG welding, the hardness and specific wear of the overlay weld alloys were increased. It is considered that these high hardness and specific wear of overlay weld alloys were due to the formation of Θ($Al_2Cu$) phases. With increasing feeding rate of Cu powders by TIG welding, the hardness and specific wear of the overlay weld alloys were increased in feeding rates 12 and 18g/min. However, the hardness and specific wear were decreased in the powder feeding rate 38g/min. It is considered that considered that decrease of hardness and specific wear in the powder feeding rate 38g/min due to formation of ${\gamma}$($Al_4Cu_9$) phases.

  • PDF

Cu, Mg을 함유한 Al-Li 합금의 기계적 성질과 전기저항 변화에 미치는 기본 및 추가 강화상들의 역할 (Roles of Fundamental and Additional Hardening Precipitates on the Changes of Mechanical Properties and Electrical Resistivity in Al-Li Alloys Containing Cu and Mg)

  • 정동석;송기호;우기도
    • 열처리공학회지
    • /
    • 제7권2호
    • /
    • pp.77-87
    • /
    • 1994
  • Roles of fundamental and additional hardening precipitates on the changes of mechanical properties and electrical resistivity during precipitation decomposition in binary Al-Li, ternaty Al-Li-Cu and multi-Li-Cu-Mg-Zr alloys have been investigated by the detailed measurement of electrical resistivity, hardness and tensile strength and the observation of transmission electron micrographs. Peek hardness and tensile strength in multi-component Al-Li-Cu-Mg-Zr Alloy had higher than that of the other alloys and the results of measurement of hardness, strength and electrical resistivity in each alloys aged at 90 and $190^{\circ}C$, precipitation behaviors and mechanical properties in binary, ternary and multi-component Al-Li alloys were contributed to the ${\delta}^{\prime}$ precursory phase of ${\delta}^{\prime}$, $T_1$, G.P.B. zone and S' phases, repectively.

  • PDF

다이캐스팅용 Al-Zn-Mg-Fe 합금의 특성에 미치는 Zn 및 Mg 첨가의 영향 (Effects of Alloying Elements on the Properties of High Strength and High Thermal Conductivity Al-Zn-Mg-Fe Alloy for Die Casting)

  • 김기태;임영석;신제식;고세현;김정민
    • 한국주조공학회지
    • /
    • 제33권4호
    • /
    • pp.171-180
    • /
    • 2013
  • The effects of alloying elements on the solidification characteristics, microstructure, thermal conductivity, and tensile strength of Al-Zn-Mg-Fe alloys were investigated for the development of high strength and high thermal conductivity aluminium alloy for die casting. The amounts of Zn and Mg in Al-Zn-Mg-Fe alloys had little effect on the liquidus/solidus temperature, the latent heat for solidification, the energy release for solidification and the fluidity of Al-Zn-Mg-Fe alloys. Thermo-physical modelling of Al-Zn-Mg-Fe alloys by the JMatPro program showed $MgZn_2$, AlCuMgZn and $Al_3Fe$ phases in the microstructure of the alloys. Increased amounts of Mg in Al-Zn-Mg-Fe alloys resulted in phase transformation, such as $MgZn_2{\Rightarrow}MgZn_2+AlCuMgZn{\Rightarrow}AlCuMgZn$ in the microstructure of the alloys. Increased amounts of Zn and Mg in Al-Zn-Mg-Fe alloys resulted in a gradual reduction of the thermal conductivity of the alloys. Increased amounts of Zn and Mg in Al-Zn-Mg-Fe alloys had little effect on the tensile strength of the alloys.

Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu 합금의 미세조직 및 경도 변화에 미치는 용체화 처리 조건의 영향 (Effect of Solution Treatment Conditions on the Microstructure and Hardness Changes of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu Alloys)

  • 정성빈;김민수;김대업;홍성길
    • 한국주조공학회지
    • /
    • 제42권6호
    • /
    • pp.337-346
    • /
    • 2022
  • 본 연구에서는 Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu 합금의 용체화 처리 조건 최적화를 위해 545℃ 온도 조건에서 최대 7시간까지 용체화 처리를 수행한 후 광학현미경 및 FE-SEM을 활용한 미세조직 관찰 및 브리넬 경도 측정을 수행하였다. 합금 내 공정 Si 상은 용체화 처리 초반 3시간 동안 급격한 조대화 현상을 나타내었으며, 이후에는 용체화 처리가 진행되어도 Si 상 크기는 크게 변화하지 않았다. 한편 공정 Si 상의 구상화의 경우, 용체화 처리 시간이 7시간에 도달할 때 까지 지속적으로 진행되었다. Cu가 첨가된 합금의 주방상태에서는 Q-Al5Cu2Mg8Si6 상과 θ-Al2Cu 상이 확인되었으나, 545℃에서 3시간 동안 진행된 용체화 처리 이후에는 모두 분해되었다. 주방상태에서 확인된 π-Al8FeMg3Si 상은 5시간의 용체화 처리 이후에 사라지거나(0.3wt%Mg) 혹은 7시간의 용체화 처리 이후에도 존재(0.5wt%Mg)하였다. 초정 α상 내 Mg 및 Cu 함량은 용체화 처리 시간이 5시간에 도달할 때 까지 증가하였으며, 이는 Mg 및 Cu를 함유한 금속간 화합물의 용체화 시간에 따른 분해 거동과 일치하였다. Al-7Si-Mg-Cu 합금의 용체화 처리 과정에서 확인한 미세조직 변화를 종합적으로 고려할 때, 본 연구에서 다룬 합금의 석출강화 효과 극대화를 위해서는 545℃ 조건에서 최소 5시간의 용체화 처리가 필요한 것으로 판단되며, 용체화 처리 조건 별로 측정된 브리넬 경도 데이터로부터 동일한 최적 용체화 처리 조건을 도출할 수 있었다.

급속응고된 Al-Pb-Cu-Mg 합금의 마모특성에 미치는 미세조직의 영향 (Effect of the Microstructrure of Rapidly Solidified Al-Pb-Cu-Mg on the Wear ProPerty)

  • 김홍물
    • 한국분말재료학회지
    • /
    • 제7권1호
    • /
    • pp.12-18
    • /
    • 2000
  • Effects of the microstrucrure of rapidy solidified Al-Pb-Cu-Mg alloys on the wear investigated. In order to overcome the miscility gap between Al and pb under equilibrium conditions, both in the solid and the liquid states, the alloy were rapidy solidifies to produce them in a segregation-free condition. Although the Pb particles showed relatively fine dispersion in the Al matrix in all the alloys by this process. the Al-16Pb alloy was found to have the most favorable microstructure with discretre with discrete Pb particles of abount 0.5 ${\mu}$m in size. With the addition of Cu and Cu-Mg to Al-16Pb, cellular structures were newly formed; not seen in the binary Al-Pb alloy. Wear properties of the Al-Pb binary alloys measured as a function of the sliding speen, sliding distance, and applied load showed that the Al-16Pb alloy has the best wear resistance, as expected from the fine microstructural features in this alloy. The were resistance of the alloy containing Cu-and Cu-Mg was higher than that of the Al-16Pvb alloy, due to matrix strengthening by precipitation hardeing. The wear mechanism was identified by examining the traces and wear debris.

  • PDF

SPS법을 이용한 CuZnAl계 형상기억합금의 제조 (Manufacturing of Cu-Zn-Al shape memory alloy using spark plasma sintering)

  • 박노진;이인성;조경식;김성진
    • 한국결정성장학회지
    • /
    • 제12권4호
    • /
    • pp.172-177
    • /
    • 2002
  • CuZnAl계 형상기억합금은 경제성, 열간 가공성 등이 우수하며 변태온도의 조절이 쉬운 등 여러 장점을 가지고 있으나, 열간 가공 중에 결정립이 쉽게 커지며, 취성이 심하고, 열이력에 대해서 형상기억 효과가 빨리 감소되는 등의 단점이 있다. 이러한 단점들은 결정립크기를 미세화함으로써 어느 정도 해소할 수 있다고 알려져 있다. 본 연구에서는 Cu-24.78Zn-9.11Al(at.%)과 Cu-13.22Zn-17.24Al(at.%)의 조성을 갖으며 비교적 작은 결정립크기를 갖는 형상기억합금을 99.9% 이상의 순도를 갖는 Cu, Zn 및 Al원소분말을 이용하여 SPS(spark plasma sintering) 방법으로 제조하였다. SPS 공정을 통하여 원소분말을 이용한 합금화가 가능함을 확인하였으며, 75-150 $\mu \textrm{m}$ 크기의 원소분말을 이용하여 제조한 경우, 두 조성 모두에서 약 70$\mu$m 의 결정립크기를 얻을 수 있었으며, 조성에 따라 상온에서 오스테나이트 단상 혹은 마르텐사이트 단상을 나타냄을 확인하였다.